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Résumé

Marc Doleans

ETUDES DANS LES CAVITES SUPRACONDUCTRICES
ELLIPTIQUES A BETA-REDUIT

(Considérations générales de leur design, variation dynamique de leur
fréquence, et dynamique longitudinale)

Les cavités elliptiques supraconductrices radio-fréquences (SRF) sont choisies dans
de nombreux linacs à cause de leur capacité à opérer avec une grande efficacité RF,
de leur large rayon de bore, etc... Ces cavités mûrissent à de nombreux égards mais la
constante évolution de leurs gradients accélérateurs requière des études complémentaires.
Par exemple, la variation dynamique de la fréquence des cavités par rapport à celle
de la RF les excitant, dûe à la pression de radiation changeante dans le temps pour
des cavités opérées en mode pulsé, comme dans le projet SNS, devient plus sévère
avec l’augmentation du champ accélérateur. Comme autre exemple, l’approximation
usuelle d’une vitesse de faisceau constante à l’intérieur d’une cavité peut devenir
imprécise pour des particules passant dans des cavités à beta-réduit et subissant un
large gain d’énergie. Il est alors intéressant de developer une approche plus générale
pour la dynamique longitudinale prenant en compte ces variations de vitesse.
Avant de présenter les études sur ces deux exemples, une introduction générale des
cavités SRF elliptiques est donnée en présentant les considérations du design des
cavités moyen et haut beta du SNS (β = 0.61 and β = 0.81). Dans cette op-
tique, l’espace des paramètres géométriques de la cavité est exploré pour trouver
une géométrie satisfaisante. Pour guider cette investigation, différents aspects de la
performance des cavités peuvent être calculés pour chaque ensemble de paramètres
géométriques. Pour trouver une géométrie candidate, des critères de design sur les
aspects qui peuvent être facilement estimés sont posés. Une région dans l’espace des
paramètres géométrique satisfaisant tous les critères de design peut finalement être
déterminée. Les géométries des cavités SNS sont dans ces régions. Une fois que les
paramètres géométriques de base de la cavité sont connus, d’autres aspects requérant
des calculs plus conséquents peuvent être étudiés.
Pour des cavités SRF elliptiques, opérant avec des hauts gradients accélérateurs, le de-
tuning de Lorentz est un problème majeur. Dûe à leur faiblesse mécanique intrinsèque,
les cavités SRF elliptiques subissent une variation dynamique de leur fréquence de
résonance à cause des forces de Lorentz changeantes dans le temps qui s’appliquent sur
leurs surfaces. La variation de fréquence produite par ces forces peut être du même
ordre que la bande passante de la cavité et donc sérieusement affecter l’amplitude et
la phase du champ accélérateur. Pour contrebalancer le changement en fréquence créé
par les forces de Lorentz, une compensation active à l’aide de tuners piézoélectriques
est possible. Dans la thèse, un modèle du problème est présenté. Ce modèle vise à
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mieux comprendre le problème dans ces aspects dynamiques et finalement à établir
un processus de compensation à l’aide des tuners piézoélectriques. La modélisation
est décomposée en deux parties: La première est liée à l’évolution du voltage RF de
la cavité, la seconde est liée aux déformations mécaniques de la cavité, et aux change-
ments de fréquences associés, produits par les deux sources de vibrations, pression de
radiation et tuner piézoélectrique. Grâce a l’effort de modélisation, la différence de
couplage entre l’action des forces de Lorentz et l’action des tuners piézoélectriques
sur la cavité est mieux comprise. Les résultats de la modélisation sont comparés à
des résultats expérimentaux et l’accord est satisfaisant. Les simulations sont alors
utilisées pour extraire les paramètres mécaniques de la cavité d’après les résultats de
mesures expérimentales. Ces paramètres permettent d’avoir un modèle réaliste de
cavité qui est ensuite utilisé pour illustrer un processus de compensation du detuning
de Lorentz. Ce processus est basé sur une analyse harmonique du problème.
Pour des cavités opérées avec des hauts gradients accélérateurs, un autre possible
problème est lié au changement de vitesse des particules lors de leurs passages à
l’intérieur d’un élément (problème similaire à la dynamique longitudinale des fais-
ceaux basses énergies). Dans cette thèse, une approche analytique de ce problème est
proposée. Quand la vitesse des particules change significativement dans l’élément,
l’assomption usuelle d’une évolution de phase linéaire devient imprécise. Au lieu de
fragmenter l’élément accélérateur, une méthode alternative prenant en compte les
non-linéarités de l’évolution de la phase est développée. Cette méthode montre que
le jeu d’équations de Panofsky est la simplification d’une formulation plus générale.
La méthode utilisant l’approximation d’une loi de phase linéaire est d’abord rappelée
pour des gaps accélérateurs avec des champs symmetriques par rapport a leurs mi-
lieux géométriques, et ensuite étendue pour les cas non symmetriques. Les limitations
inhérentes à cette méthode sont illustrées. Une méthode de calcul plus générale est
alors développée et se base sur des itérations analytiques. Les calculs sont menées
pour trois itérations, ce qui est suffisant pour couvrir les cas où la partie non-linéaire
de l’évolution de la phase est en dessous d’une certaine limite. Les résultats obtenus
par le processus itératif suggère une formulation plus générale pour la solution du
problème. Dans cette formulation, les dépendances pour certaines variables sont ex-
plicites (charge électrique et masse des particules, phase d’entrée des particules par
rapport au champ accélérateur, et amplitude de ce champ), et implicites pour d’autres
(béta d’entrée des particules et profil normalisé du champ). De cette formulation,
une méthode semi-analytique est déduite pour traiter les cas où la non-linéarité de
l’évolution de la phase est trop large.
Dans la mesure où la plupart des exemples et illustrations proposés dans cette thèse
proviennent d’études réalisées pour le projet SNS, une brève présentation de ce projet
et de son système accélérateur est proposée dans le chapitre 0.
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Abstract

Marc Doleans

STUDIES IN REDUCED-BETA ELLIPTICAL
SUPERCONDUCTING CAVITIES

(General Design Considerations , Dynamic Detuning, and
Longitudinal Dynamics)

Elliptical superconducting radio-frequency (SRF) cavities have been chosen as a
preferred structure for many linacs because of their capacity to operate with high RF
efficiency, their large bore radius, etc... Such cavities reach maturity in many regards
but the continual increase in their accelerating gradients prompt further studies. For
example, the dynamic detuning of a cavity with respect to the RF source feeding it,
originating from the time varying radiation pressure in cavities operated in pulsed
mode, like those in the Spallation Neutron Source (SNS) project, becomes more of
an issue as the amplitude of the accelerating field increases. As another example, the
usual assumption of a constant velocity of the beam within the cavity can become
inaccurate for particles passing through reduced-beta SRF cavities and experiencing
large energy gain. As a consequence, it is interesting to develop a more general ap-
proach taking the variations of the particle’s velocity within the accelerating element
into account.
Before presenting studies on both of those examples, a general introduction of ellipti-
cal SRF cavities is given, focusing on the design considerations for the SNS medium
and high betas cavities (β = 0.61 and β = 0.81). The cavity geometrical parameter
space is explored to find proper cavity shapes. To guide this investigation, various
aspects of the the cavity performance can be calculated for different sets of geomet-
rical parameters. To find a candidate for the cavity geometry, design criteria are set
on those aspects which can easily be integrated in the investigation process. A region
in the geometrical parameter space satisfying all the design criteria can eventually be
found. The SNS cavity geometries are in such regions. Once some basic parameters
of the cavity are found, other aspects requiring more involved computations are con-
sidered.
For elliptical SRF cavities, operating with high accelerating gradients, the Lorentz
detuning is a major concern. Due to their intrinsic weak mechanical properties, ellip-
tical SRF cavities operated in pulsed mode experience a dynamic variation of their
resonant frequency due to the time varying Lorentz forces to which their surface is
exposed. The detuning generated by these forces can be of the same order as the
electromagnetic bandwidth of the cavity and consequently strongly affect the ampli-
tude and the phase of the accelerating field during the beam pulse. To counteract
the detuning action of the dynamic Lorentz forces, an active compensating scheme
using piezoelectric tuners may be used. The proposed model focuses on improving
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the understanding of the problem in its dynamical aspects and eventually leads to
the establishment of a compensation scheme using piezoelectric tuners. The modeling
is divided into two aspects: One related to the evolution of the RF cavity voltage,
and an other related to the mechanical deformations and the corresponding detuning
generated by the two sources of mechanical vibrations, radiation pressure and piezo-
electric tuners. From the modeling, the difference in the coupling between the Lorentz
forces action and the action of the piezoelectric tuner forces to the cavity structure
is better understood. The results from the modeling are compared to experimental
results and their agreement is found to be satisfying. Simulations are then used to
extract values for the parameters pertaining to the mechanical aspect from the mea-
surements. Those parameters allow to have a realistic model of the cavity, which is
used to illustrate a compensating scheme of the Lorentz detuning using piezoelectric
tuners. The scheme itself is based on a harmonic analysis of the problem.
For a cavity operated with high accelerating gradients, one other possible issue is the
non negligible change of the particle’s velocity within the accelerating element (not
unlike the longitudinal dynamics of low energy beams). An analytical approach of the
problem is presented. When the particle’s velocity changes significantly within the
element, the usual assumption of a linear phase law becomes inaccurate. Instead of
fractioning the accelerating element into smaller pieces, an alternative method taking
into account the non linearity of the phase law is developed. This method shows that
the usual set of Panofsky equations is a simplification of a more general formulation
for the longitudinal dynamics of accelerated particles. The thin lens approximation
method is first reviewed for gaps with symmetric field with respect to their geomet-
rical middle, and then extended to non symmetric cases. Furthermore, the inherent
limits of this method are illustrated. Subsequently, a more general method based
on a solution of the problem by analytical iterations is developed. Calculations are
made up to three iterations, which is sufficient to cover cases where the non linearity
of the phase law is below a certain limit. The results suggest a general form for
the solution of the problem. In this form, dependencies upon certain variables are
explicit (electrical charge, mass, and entrance phase of the particle with respect to
the accelerating field, and amplitude of the accelerating field), and implicit for others
(entrance beta of the particle and normalized profile of the field). From this formu-
lation a semi-analytical method is derived to treat cases with stronger non linearity
of the phase law.
Since most of the examples and illustrations in this thesis are based on studies de-
veloped for the SNS project, a basic presentation of this project and its accelerator
system is proposed in chapter 0.
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Chapter 0

SNS overview

In this chapter, a basic presentation of the SNS project and its accelerator system is
given. This overview and much more material about the SNS can be found on the
project website (http://www.sns.gov). The latest status of the SNS project can be
found in [46].

0.1 The SNS Partnership

The SNS project is a partnership involving six DOE national laboratories (Argonne,
Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge) in the design
and construction of what will be the most powerful spallation source in the world for
neutron-scattering R&D. The baseline design calls for an accelerator system consisting
of an ion source, full-energy linear accelerator (linac), and an accumulator ring that
combine to produce short, powerful pulses of protons. These proton pulses impinge
onto a mercury target to produce neutrons through the spallation nuclear reaction
process. The SNS site plan with these systems marked out is presented in Fig. 1. The
SNS will deliver 1.4 million watts (1.4 MW) of beam power onto the target (other
basic design technical parameters of the SNS are summarized in Table 1).

0.2 The Ion Source

Lawrence Berkeley National Laboratory (LBNL) is responsible for designing and
building the SNSs front-end system, which includes an ion source, beam formation
and control hardware, and low energy beam transport and acceleration systems. The
ion source produces negative hydrogen (H-) ions  hydrogen with an additional elec-
tron attached  that are formed into a pulsed beam and accelerated to an energy of
2.5 million electron volts (MeV). This beam is delivered to a large linear accelerator.
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Figure 1: SNS site plan.

0.3 The Linac

Los Alamos National Laboratory (LANL) is responsible for the linear accelerator,
which accelerates the H - beam from 2.5 to 1000 MeV, or 1 GeV. The linac is a su-
perposition of normal conducting and super-conducting radio-frequency cavities that
accelerate the beam and a magnetic lattice that provides focusing and steering. Three
different types of accelerators are used. The first two, the drift tube linac and the
coupled-cavity linac are made of copper, operate at room temperature, and accelerate
the beam to about 200 MeV. The remainder of the acceleration is accomplished by
superconducting niobium cavities, which are the responsibility of Thomas Jefferson
National Accelerator Facility (JLab). These cavities are cooled with liquid helium to
an operating temperature of 2 K. A schematic layout of the SNS linac is presented in
Fig. 2. Diagnostic elements provide information about the beam current, shape, and
timing, as well as other information necessary to ensure that the beam is suitable for
injection into the accumulator ring and to allow the high-power beam to be controlled
safely.

0.4 The Accumulator Ring

Brookhaven National Laboratory (BNL) is responsible for the accumulator ring struc-
ture, which bunches and intensifies the ion beam for delivery onto the mercury target
to produce the pulsed neutron beams. The intense H- beam from the linac must
be sharpened more than 1000 times to produce the extremely short, sharp bunch of
neutrons needed for optimal neutron-scattering research. To accomplish this goal,
the H- pulse from the linac is wrapped into the ring through a stripper foil that strips
the electrons from the negatively charged hydrogen ions to produce the protons (H+)



0.5 The Target 15

Table 1: Basic Design Technical Parameters

Proton beam power on target 1.4 MW
Proton beam kinetic energy on target 1.0 Gev
Average beam current on target 1.4 mA
Pulse repetition rate 60 Hz
Protons per pulse on target 1.5 × 1014

Charge per pulse on target 24 µC
Energy per pulse on target 24 kJ
Proton pulse length on target 695 ns
Ion type (Front end, Linac, HEBT) H-
Ion type (Ring, RTBT, Target) H+
Average linac macropulse H- current 26 mA
Linac beam macro pulse duty factor 6 %
Front end length 7.5 m
Linac length 331 m
HEBT length 170 m
Ring circumference 248 m
RTBT length 150 m
Ring filling time 1.0 ms
Ring revolution frequency 1.058 Mhz
Number of injected turns 1060
Ring filling fraction 68 %
Ring extraction beam gap 250 ns
Maximum uncontrolled beam loss 1 W/m
Target material Hg
Initial number of Instruments 5

that circulate in the ring. Approximately 1200 turns are accumulated, and then all
these protons are kicked out at once, producing a pulse less than 1 millionth of a
second (10−6 seconds) in duration that is delivered to the target. In this way, short,
intense proton pulses are produced, stored, and extracted at a rate of 60 times a
second to bombard the target. A schematic layout of the SNS ring is given in Fig. 3.

0.5 The Target

ORNL is responsible for the design and construction of the liquid mercury target.
Because of the enormous amount of energy that the short, powerful pulses of the
incoming 1 GeV proton beam will deposit in the spallation target, it was decided to
use a liquid mercury target rather than a solid target such as tantalum or tungsten.
The SNS will be the first scientific facility to use pure mercury as a target for a
proton beam. Mercury was chosen for the target for several reasons: (1) it is not
damaged by radiation, as are solids; (2) it has a high atomic number, making it a
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Figure 2: Schematic layout of the SNS linac.

Figure 3: Schematic layout of the SNS ring.

source of numerous neutrons (the average mercury nucleus has 120 neutrons and 80
protons); and (3), because it is liquid at room temperature, it is better able than
a solid target to dissipate the large, rapid rise in temperature and withstand the
shock effects arising from the rapid high-energy pulses. The neutrons coming out
of the target must be turned into low-energy neutrons suitable for research  that
is, they must be moderated to room temperature or colder. The neutrons emerging
from the target are slowed down by passing them through cells filled with water (to
produce room-temperature neutrons) or through containers of liquid hydrogen at a
temperature of 20 K (to produce cold neutrons). These moderators are located above
and below the target. Cold neutrons are especially useful for research on polymers
and proteins.
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Chapter 1

Design considerations of elliptical
superconducting cavities

Elliptical shape SC cavities have become a technology of choice in many accelerator
applications. Achieving the highest accelerating gradient and RF efficiency possible
are usually primary goals common to all the applications where elliptical SRF are
chosen as accelerating structures. Other aspects such as high order modes (HOM),
Lorentz force detuning, field flatness, thermal stability and multipacting have also
to be considered at the design stage and can influence the choice for the geometric
parameters of the cavity. Because these different concerns can interfere with one
an other, the design of a cavity is usually a matter of compromises. To help find-
ing a satisfying cavity shape, it is beneficial to define a global design scheme where
particular design criteria are targeted. Once such requirements are set, a systematic
investigation in the cavity geometrical parameter space provides a convenient manner
to converge toward an adequate cell shape. Such a procedure was developed in the
design of the SRF cavities at the SNS [2]. Areas in the cavity geometrical parameter
space were identified and the final cavity shapes [3] are consistent with them. In the
following, the main results of this procedure are reviewed. The basic parameters of
the SNS cavities, the parametrization of the cavity geometry, and the design crite-
ria are presented first. The results of the geometry optimization procedure are then
shown. Finally, further studies with the chosen geometries are reported.

1.1 Basic parameters

SRF elliptical cavities are typically designed to operate with frequencies from a few
hundreds of megahertz to a couple of gigahertz. The choice of the frequency is the
first step of the design and can be determined considering basic scaling laws for the
frequencies [1]. It is for example known that whereas high frequencies relate to smaller
cavities and are therefore efficient in terms of building cost, low frequencies lead to
lower surface heat dissipation and are consequently efficient in terms of cryogenic
operating cost. Practically, the exact choice for the operating frequency is not an
isolated issue and it can heavily be influenced by other components of the accelerator.
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Other main parameters of an elliptical SRF cavity are the length and the number of its
cells. Contrary to some other accelerating structures such as DTL cavities, elliptical
SRF cavities, operated in pi mode, do not have drift tubes between consecutive cells
to insure synchronicity between the particles and the RF accelerating field. Instead,
a particle with a matched beta crosses a cell in half an RF period and therefore sees
an accelerating field in each consecutive gap. For this reason, the cavity is usually
identified by a “geometrical” beta, which corresponds to the particle’s velocity for
which perfect synchronicity occures. Even though the acceleration is maximum for
particles having their beta equal to the cavity’s geometrical beta, the acceleration can
remain efficient enough over a broad range of velocities. This efficiency is strongly
influenced by the number of cells in the cavity. Depending on the energy range
the particles have to be accelerated and on the achievable accelerating gradient, an
optimum value for the geometrical beta and for the number of cells of a cavity can
be determined (physics of the longitudinal dynamics are developed in chapter 3). In
the SNS for example, two different 6-cell elliptical SRF cavities are designed with
geometrical beta equal to 0.61 and 0.81. The first type is used to accelerate H− ions
from β = 0.55 to β = 0.7 and the second from β = 0.7 to β = 0.88. The basic
parameters of the SNS SRF cavities are summarized in Table 1.1.

Table 1.1: Basic parameters for the SNS elliptical SRF cavtities

Frequency 805 MHz
Geometrical betas 0.61 and 0.81
Number of cells 6
Section 1, Number of 0.61 cavities 33
Section 2, Number of 0.81 cavities 48
Accelerated particles H−

Repetition rate 60 Hz
Peak beam current 26 mA
Average beam current 1.56 mA
Energy Range 185-1000 Mev
Energy at the transition 390 Mev
Beta Range 0.55-0.88
Beta at the transition 0.7

1.2 Cavity geometrical parameter space

After choosing the frequency and the number of cells, the geometrical parameters
of SRF cavities can be investigated. A multicell SRF cavity is usually designed to
have identical inner-cells; the end-cells need to be designed separately due to their
connection to the beam pipes. The main results of the design scheme presented in [2]
are shown in this section.
An inner cell is usually composed of two identical half-cells. Each half cell can be
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Figure 1.1: (a) Geometrical parametrization for a cell of an ellip-
tical SRF cavity using five variables Req, Rc, α, a/b, Ri. (b) For
a given set of geometrical parameters there exists an optimal value
for a/b such that the quantity Ep/E0T is minimized. In the design
process this value for a/b is used making it a quantity dependent on
the other geometrical parameters.

designed using a cicular dome, a straight line, and an elliptical iris as displayed in Fig.
1.1. The cell shape can be described using five geometrical parameters: The Equator
radius Req, the radius of the circular dome Rc, the slope angle of the straight line α,
the ratio of the iris ellipse half axis a/b, and the radius of the iris Ri (Superfish [4]
notations). Because the length of the cell is already determined from the choice of
the geometrical beta of the cell, these parameters are in fact not totally independent.
The value of the equator radius Req is used for tuning only since its effect on the
resonance frequency is large but its influence on the cavity performance is negligible.
Only four variables constitute the geometrical parameter space of the cavity. To
determin a cavity shape, some design criteria can first be defined.

1.3 Qualitative aspects of the cavity performance

The cavity performance depends on many different aspects, and the design is a mat-
ter of compromises. Whereas some aspects and their tendancies (R/Q, ratio of peak
surface field to on-axis field, intercell coupling coefficient...) can be estimated when
exploring the geometrical parameter space , some others (HOM properties, multi-
pacting, thermal stability...) are difficult to consider or control at such stage . As a
consequence it is necessary to proceed in two phases. First, optimizing the cell shape
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with respect to aspects which can easily be calculated. Secondly, estimate the overall
performance of the cavity, including the aspects overlooked during the first phase,
and possibly alter the design if the results are not satisfying.

Table 1.2: Aspects for the first phase of the design of the cavity
shape

Inner cell Minimize the peak surface fields
Maximize the R/Q
Achieve reasonable inter-cell coupling coefficient
Provide a reasonable mechanical stiffness

End cell Equal or lower peak surface fields than for the inner cells
Achieve a reasonable Qex
Obtain a good field flatness

Controllable aspects considered during the design of the inner-cells and end-cells
are listed in Table 1.2. For the inner cell, a basic criteria is to minimize the peak
surface fields, since field emission increases with larger surface electric field, and
because high magnetic fields can lead to a quench of the superconducting state of
the cavity (the theoritical limit is approximately 200 mT but quenching is possible
below such a value due to material defects). Surface fields are linearly proportional
to the accelerating gradient and are therefore limiting factors for the performance
of the cavity. The upper limit for the peak surface electric field, located in the iris
region of the cell, is strongly dependent on the condition of the cavity surface. To
enhance this limit, many surface treatment processes have been developed over the
years (helium processing [5], high pressure rinsing [6], electro-polishing [7], baking
[8], chemical processing [9]...). Combinations of these surface processes have so far
allowed to reach peak surface electric fields around 40 MV/m in a reliable manner
[10]. Surface electric fields as high as 100 MV/m have already been reached but are
not reliable yet for machine operation.
An other desired aspect for the design of a cavity is to maximize the R/Q parameter,
which is proportional to the ratio of the stored energy in the cavity over the on-
axis accelerating voltage (this last quantity depends on the beta of the particle).
Maximizing the R/Q allows to optimize the accelerating efficiency of the structure.
This parameter is usually quoted as a “geometrical” parameter because its value
depends on the shape of the cavity but not on the amplitude of the field.
A third aspect of the design is to achieve a reasonable amount of coupling between
cells. A large coupling allows to have a good field flatness for the entire cavity and
lower the risk of having trapped HOMs.
A fourth aspect is to obtain a mechanical stiffness such as to limit the effect of the
mechanical deformations/vibrations induced in SRF cavities by microphonics and
Lorentz forces. In pulsed operation, the dynamic detuning generated by the Lorentz
forces is a major concern in elliptical SRF cavities. It is then of great interest to design
a cavity shape that would intrinsically be stiff. Supplementary methods, for example
the addition of stiffening rings between cells, are usually applied to further enhance
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the stiffness of the structure. Even if calculations using simulation codes are not
precise enough to estimate all the aspects of this problem, they are useful to obtain
relative tendencies among different cell shapes (issues relative to dynamic detuning
in SRF cavities and its compensation are presented in chapter 2). The design of the

Table 1.3: Aspects for the second phase of the design of the cavity
shape

For chosen cavity shape High Order Modes related issues
Multipacting
Static and dynamic lorentz detuning
Thermal stability

end cells must be different from the design of the inner cells due to the connections to
the beam pipes. Both end cells can also be different from one an other, for example
to accomodate for the connection to the fundamental power coupler (FPC). A first
aspect of the end cell design is to obtain equal or lower surface fields than in the
inner cells in order to avoid deteriorating the overall cavity performance in terms of
accelerating gradient. A second aspect is the external Q (Qex) of a cavity which
is mainly determined from the end cell geometry and its connection to the FPC.
The Qex measures the amount of coupling between the cavity and the RF feeding
source. Depending on the nominal accelerating gradient and on the beam current, an
optimum value for the Qex can be determined (see details in section A.5). A third
aspect when determining the shape of the end cells is the field flatness.

1.4 Optimization of the cavity geometry

1.4.1 Inner cell case

All the aspects enumerated in the previous section should be considered when desiging
a cavity. As a concrete example, the case of the SNS medium beta (β = 0.61) is
presented. It was mentioned before that only four geometrical parameters can be
considered for the design of the cell shape. These parameters are, the dome radius
Rc, the bore radius Ri, the slope angle α, and the ellipse ratio a/b. For an elliptical
SRF cavity of geometrical beta 0.61, the cell is rather weak mechanically and it
is found that the slope angle should be smaller than 8 degrees to insure minimum
stiffness. At the same time, to insure effective chemical and HPR surface processings,
the slope angle of the cavity should be larger than 6 degrees. As a consequence, the
value for the slope angle is here constrained in the small region 6◦ ≤ α ≤ 8◦. As a
trade off, α can be fixed to 7 degrees. The three remaining parameters are Rc, Ri
and a/b. The various aspects presented in Table 1.2 can be scanned for different
values of these variables. In the following, four different quantities are estimated for
each cell geometry and quantitative design criteria are set for each of them. The
first of these quantities is Ep/Eacc, where Ep is the peak surface electric field and
Eacc = E0T is the accelerating gradient taken for particles with beta equal to the
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Figure 1.2: Inner cell shape optimization in the SNS medium beta
cavity. Four quantities Ep/E0T , Bp/Ep, k, and KL are estimated
for different values of the geometrical parameters Rc and Ri. De-
sign criteria over the four plotted parameters define an acceptable
region where the cell shape can be designed. The final cell design is
indicated with a pink dot.

geometrical beta of the cavity βg. For a given Ep it is of interest to have this ratio as
small as possible. In the SNS medium beta cavity, the accelerating gradient is desired
to be larger than 10 MV/m and a peak surface electric field of 27.5 MV/m is fixed
as nominal value. Adding a 10% margin gives as a first design criteria Ep/Eacc ≤ 2.9.
The second quantity is the ratio Bp/Ep where Bp is the peak surface magnetic field.
As a design criteria, Bp is pursued to be less than 60 mT for the nominal value of Ep.
This translates to a design criteria Bp/Ep ≤ 2.2 [mT/MV/m]. Investigating existing
elliptical cavities, it is observed that a ratio lower than 2 seems to translate to lower
cavity performance. This empirical observation is used to set an additional criteria
Bp/Ep ≥ 2 [mT/MV/m]. The third quantity is the intercell coupling coefficient k
calculated from the fundamental passband frequencies as in [1]. The criteria is set
to be k ≥ 1.5%. Finally, the fourth quantity is the Loretnz force detuning coefficient
KL which relates the amount of static detuning ∆f to the accelerating gradient Eacc

as ∆f = −KLE
2
acc. The criteria for the static Lorentz detuning coefficient is set to

be KL ≤ 3 [Hz/MV 2/m2]. During the scanning of the geometrical parameters space,
it is found that for each values of Rc and Ri, an optimum value of the iris ratio a/b
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can be found such that the ratio Ep/Eacc is miminized, as illustrated in Fig. 1.1
(the influence over the other parameters can be discarded). As a consequence, the
geometrical space can be explored for the two variables Rc and Ri only, by setting
the ratio a/b to its optimum value in every case. Different values for Rc and Ri are
scanned and the four previous quantities Ep/Eacc, Bp/Ep, k and KL are calculated
for each case. The results are presented in Fig. 1.2. The design criteria define a
region where the values of Rc and Ri lead to acceptable cavity performance. The
final choice is a matter of strategy. In the SNS case for example, the geometry
minimizes Ep/Eacc. The same approach has also been applied to the SNS high beta
case where the nominal surface peak electric field is equal to 35 MV/m and similar
results were obtained.

1.4.2 End cell case

Due to the attached beam pipes, the end cell should be designed separately. The
aspects related to the end cell shape are listed in Table 1.3. As a first concern, the
nominal Qex value should be approximately achieved. In the SNS, the fundamental
power coupler is of coaxial type and the Qex is therefore influenced by the level of the
electric field at the inner conductor tip position. Because the nominal Qex is large
(Qex = 7.3 105 in the SNS medium beta case), the coupler must be positioned in low
field region, here a few centimeters away from the end cell of the cavity, in the beam
pipe region, as displayed in Fig. 1.3. Because the shape of the end cell influences
the electric field (mainly the bore radius or BPR parameter in Fig. 1.3), its design
allows to control the value of the Qex. But other parameters shown in Fig. 1.3 must
be considered as well. Particularly, the dependence on the vertical position of the
inner conductor tip is strong and permits to efficiently control the value of the Qex
with other parameters fixed. The Qex was estimated using the calculation scheme
proposed in [11] and the agreement with the measurements performed by JLAB on
the SNS medium beta cryomodule is satisfying as illustrated in Fig. 1.4. Other
aspects of the end cell design are the surface peak fields and the field flatness. The
shape of the end cells can be controlled to achieve good results. For example in Fig.
1.5, the on axis longitudinal electric field profile is presented for three different end
cell geometries for the SNS high beta case. The field flatness varies roughly from a
percent to five percents in this example. The computed field flatness for the final SNS
cavity geometries is below the three percents design criteria (Tuning and flattening
of a cavity are still required after the assembly of the cavity [12]). The peak surface
electric fields are lower in the end cells than in the inner cells which also satisfies the
design criteris listed in Table 1.3 (Surface field profiles are shown in chapter 2).

1.5 Further studies with chosen geometry

The design of the inner cells and of the end cells focuses on the general performance
of the cavity. As listed in Table 1.3, other particular issues have to be addressed.
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Figure 1.3: End cell and fundamental power coupler. To achieve
the nominal Qex, the end cell geometry and the parameters of the
FPC can be varied.

Figure 1.4: Calculated and measured variation of the Qex with
respect to the FPC inner conductor tip position (Measurement per-
formed by I. Campisi at JLAB).
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Figure 1.5: On axis longitudinal electric field amplitude with re-
spect to the longitudinal position. The field flatness can be varied
by adjusting the end cell geometry.

1.5.1 High Order Modes

As the beam passes through the cavity it deposes energy in the fundamental mode
(usual beam loading) but also in all the other modes of the resonator (other fundamen-
tal passband modes and HOM). Large excitations of HOM can lead to unacceptable
additional power dissipation in the cryogenic system or generate beam instabilities.
The amplitude of the excitation for each HOM depends on the HOM’s frequency,
field profile and level of damping, and on the current, velocity, and time structure of
the beam. The characteristics of the HOMs depend on the cavity geometry. Partic-
ular attention has to be paid on modes with frequencies close to Fourier components
of the beam time structure and on possible trapped modes (modes with large field
amplitude in the inner cells and small field amplitude in the end cells). The risk of
possible trapped modes increases with the number of cells of the cavity. Such modes
have high external Q and can therefore be largely excited by the beam. Study of the
HOM related issues in the SNS showed that beam instabilities are not a main concern
[13] due to the relatively large mass of the H−. Inversely, the complex time structure
of the SNS beam increases the probability to excite non negligible amount of HOM
power [14]. As a consequence, HOM couplers are installed at both end of each SRF
cavity to increase the damping of the HOMs and to limit the amplitude of the HOM
power deposited in the cryogenic system (The design of the HOM dampers for the
SNS was derived from the TESLA HOM couplers [15]).
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1.5.2 Microphonics and Lorentz detuning

For high Q resonator such as superconducting cavities, the narrow electromagnetic
bandwidth ω1/2 = ω

2Qex
makes the coupling between the cavity and the RF feeding

source sensitive to rather small amount of detuning (in the same order as the cavity
half-bandiwidth ω1/2). As a result, small mechanical deformations due for example to
the surronding vibration noise (microphonics) or Lorentz forces (due to the radiation
pressure), are a source of concern. Whereas microphonics are usually critical for CW
operation, the dynamic detuning associated to Lorentz forces is the main issue for
pulsed operation as in the SNS. The shape of the cavity determins its intrinsic stiffe-
ness and relative comparison between different geometries can gives useful tendencies
during the desgin of the cells. For example, it is found that in the case of elliptical
cavities, smaller α helps increasing the mechanical stability of the cavity. Because the
design must take many other issues into considerations, the cavity shape is not solely
considered from the mechanical point of view, and the intrinsic stiffness of an elliptical
cavity is usually not sufficient. The amplitude of the mechanical deformations can be
further limited by increasing the stiffness of the accelerating structure, for example
by the addition of stiffening rings between the cavity cells. Calculations using a code
simulating mechanical system, as ANSYS [16] for example, allows to find efficient
positionning of such stiffening element. Because the cavity needs to be tuned after
assembly, the strength of the stiffening must be kept below a certain limit (related
to the strength of the tuning system). Generally, the allowable additional stiffening
helps reducing the amplitude of the induced vibrations but is not sufficient to make
the associated detuning negligible compare to the electromagnetic half-bandwidth.
Therefore, the study of an elliptical SRF cavity under dynamic detuning is needed
after the design stage. An extensive effort for such a study has been carried in the
case of the SNS (see Chapter 2).

1.5.3 Multipacting

The multipacting is a general issue for many RF structures and a global introduction
of this phenomenon can be found in [1]. Basically, an electron can be accelerated by
the RF field, collide with the wall of the structure and produce secondary electrons.
These secondary electrons can in turn produce more electrons and so on. Eventu-
ally, a large number of electrons can be generated and, in SRF cavities, absorb a
non negligible part of the RF energy or dissipate enough heat through collision to the
cavity surface to provoke a thermal breakdown. In both cases, multipacting limits the
achievable accelerating gradient of the cavity. The multipacting depends strongly on
the cavity geometry (which affects the resonant trajectories of the electrons) and on
its surface condition (which affects the secondary electron emission coefficient). After
a geometry is considered it is important to look for possible multipacting process.
Different codes, such as MultiP [17], exist to study multipacting. 3-D calculations
using this code were done for the SNS medium beta cavities [18] and showed good
agreement with experimental results and previous calculations performed at the Uni-
versity of Helsinki [19]. In conclusion, the multipacting issue can be investigated using
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simulation codes and included in the second phase of the design stage of an elliptical
SRF cavity. If strong multipacting is expected, the cavity geometry can eventually
be modified.

1.5.4 Thermal stability

For SRF cavities, the thermal stability is a crucial aspect. Many different phe-
nomenons such as thermal breakdown, multipacting, field emission, can affect the
thermal stability of a superconducting cavity. Some of them depend directly on the
geometry. For example, thermal breakdown can occur in high magnetic field region
where a material defect is present [1]. Therefore, limiting the peak surface magnetic
field Bp during the design is of direct benefit. Also, the multipacting is a resonant
phenomenon related to the cavity geometry and can generate untolerable amount of
heat. As a last example of thermal stability issue, it is interesting to mention the
case of the SNS cavities where both sides of beam pipes are not actively cooled (the
helium vessel ends at the connections of the end cells and the beam pipes). Also, the
RRR of the beam pipes was chosen lower than the RRR of the cavity for economical
reasons. Using a map of the magnetic field in the end cell regions, a study of thermal
stability was done [20] from which the dependence on the beam pipe’s RRR values
and acceptable defect size was found (the RRR of the beam pipe has been increased
from 25 to 50 according to the results). In conclusion, some thermal stability issues
are directly related to the cavity geometry and various studies can be valuable to
show if the chosen geometry would lead to thermal instabilities.

1.6 Conclusion

The design of a superconducting cavity is a compromise effort that must take various
issues into account. To find a satisfying geometry, different aspects governing the
cavity performance can be listed. Whereas some aspects can easily be quantified and
considered at the early phase of the design, some others necessitating more elaborate
studies are generally only addressed in a second phase. In the first phase, a set of
criteria for the performance of a cavity can be set and the geometrical parameter
space investigated. Eventually, a region in the parameter space satisfying all the
design criteria can be found. In the second phase, remaining aspects of the cavity
performance can be studied using the chosen cavity geometry. If particular problems
are discovered, the cavity shape can possibly be altered.
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Chapter 2

Dynamic detuning in SRF cavities

In many designs and real applications for pulsed mode linacs, elliptical SRF cavities
have been chosen because of their capacity to operate at high accelerating gradient
with high RF efficiency, large bore radius, etc. These elliptical cavities have, however,
intrinsic weak mechanical properties. In pulsed mode operation the cavities will
experience dynamic detuning, for example due to the time varying Lorentz forces
acting on the cavity walls. Since SRF cavities have high Q values in comparison with
normal conducting cavities, the matching to the RF generator is sensitive even to
small amounts of detuning. To minimize the amplitude of the dynamic detuning, the
mechanical strength of the cavity stucture can be enhanced, for example by adding
some stiffening rings between the cells [15], by copper deposition on the cavity outer
surface [39], or by increasing the mechanical stiffeness of the helium vessel attached
to the cavity. These passive schemes help to reduce the amplitude of the dynamic
detuning but are usually not sufficient to reduce the detuning to negligible levels
compared to the cavity electromagnetic bandwidth. To compensate for the detuning
mismatch and to keep the voltage ratings constant during the beam pulse, the RF
input power amplitude and phase must be adjusted. For this, a RF control system
is needed. Various RF control systems exist to handle such problems, and some high
performance digital systems operating mutltiple cavities with a single klystron source,
even in presence of dynamic detuning, have already been succefully designed and
implemented [25]. In this latest case, particular instabilities for the RF system have
nevertheless been identified [26]. Compensating the dynamic detuning effects with the
RF system requires providing additional RF power. To avoid wasting RF power, some
other active compensative approaches have been proposed [27, 28]. The scheme based
on a dynamic tuning of the cavity frequency by piezoelectric tuners has been proven
to be a viable choice [33, 29]. To optimize the frequency compensation scheme by a
piezoelectric tuner, a clear understanding and modeling of the full detuning dynamics
is desirable. Such modeling should combine the calculation of the voltage when the
cavity is under a dynamic detuning and the calculation of this detuning, mainly
created by the Lorentz forces and by the piezoelectric tuner action. In Section 2.1,
the sources of dynamic detuning in SRF cavities will first be presented. In Section
2.2, the dynamic response of the voltage for a cavity under dynamic detuning will
be developed and illustrated. In Section 2.3, the modeling for the detuning itself



2.1 Sources of the dynamic detuning 29

will be shown. In Section 2.4, both aspects of the modeling will be compared to
experimental measurements done on the SNS medium beta prototype cryomodule.
Particular emphasis will be made on the calculation of cavity mechanical parameters
using simulations and experimental data. With these parameters, the modeling of a
cavity can become a valuable tool not only for the understanding but also for practical
applications. For example in the last Section 2.5, a study on the compensation of the
detuning using a piezoelectric tuner is presented and applied to the SNS case to find
adequate piezoelectric input voltage waveforms.

2.1 Sources of the dynamic detuning

To minimize the required RF power consumption, the cavity resonance frequency
can be intentionaly detuned with a step tuner, for example when the beam is not
accelerated on crest or when the cavity is operated in CW and experiences a static
Lorentz force detuning. In such a case, the cavity has a constant resonance frequency
offset compared to its nominal value which corresponds to a static detuning situation.
In contrast, a dynamic detuning refers to a time dependent variation of the cavity
frequency. Three different sources of dynamic detuning will be presented next: the
radiation pressure, the piezoelectric active tuner, and the microphonics.

2.1.1 Radiation pressure

The radiation pressure is due the transfer of momentum from the electromagnetic
wave to the cavity surface. The pressure is applied normal to the surface and its
amplitude, after averaging on the fast RF oscillations of the fields, is given by

Prad =
1

4
{µ0|H|2 − ε0|E|2} (2.1)

where |H| and |E| are the field amplitudes on the cavity surface. The pressure
is directed outward when this quantity is positive and directed inward when it is
negative. Calculating the field distribution at the surface of the cavity with a code like
SUPERFISH [4] shows that in the equator region of the cells where the magnetic field
is large, the radiation pressure is positive and pushes the cavity wall outward whereas
in the iris region, where the electric field is large, the pressure is directed inward.
Applying Eq. (2.1) to the cases of the SNS medium and high beta cavities gives a
pressure in the order of 1000 Pa in the equator region where the maximum magnetic
field is around 60mT for the nominal accelerating field gradients, and -2000 Pa at
the iris region where the nominal peak surface electric fields are around 30 MV/m
in both cases. The details of the surface magnetic and electric field distributions
and of the radiation pressure distribution, in the SNS medium beta cavity and high
beta cavity are displayed in Fig. 2.1 and Fig. 2.2 respectively. In pulsed operation,
the cavity is filled and emptied of electromagnetic energy at the operation repetition
rate (60 Hz in the SNS). As a consequence the radiation pressure is not constant in
time but follows the RF field build-up and decay cycle which produces a dynamic
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Figure 2.1: (a) Amplitude of the surface magnetic field and surface
electric field versus the longitudinal position in the SNS medium beta
cavity. The peak surface electric field is set to its nominal value of
27.5 MV/m. (b) Radiation Pressure versus the longitudinal position
in the SNS medium beta cavity.

detuning. Due to the inertia of the cavity structure, the mechanical deformations of
the cavity surface do not exactly follow in time the variations of the radiation pressure.
As a direct consequence, the Lorentz detuning in pulsed operation is usually not
constant within the beam pulse, even if the voltage amplitude is maintained constant
during this period of time. This raises some issues for the RF control system which
should provide a stable voltage amplitude and phase when the beam is on. If the
detuning is dynamic during an RF cycle it is nevertheless, after reaching its steady
state behavior, repetitive from one pulse to an other because the voltage pulse profile
repeats with such a period (see Section 2.3.2). Due to the repetitive nature of the
Lorentz detuning, an optimization of the cavity operation by proper feedforward
and/or by compensation of the detuning using piezoelectric tuners is possible.

2.1.2 Piezoelectric tuner

Here to fore, the piezoelectric tuner will sometimes simply be refered to as the piezo-
electric. When the detuning is dynamic within the beam pulse, the matching con-
dition between the RF source and the cavity is also dynamically varying. To keep
the voltage ratings constant, the RF forward power and its phase need to be con-
troled. Compensating for the effect of the detuning requires consumming additional
RF power (as shown in Section 2.2.3). Thus, it is desirable to minimize the amplitude
of the detuning itself. Some passive methods exist to increase the cavity mechanical
strength and minimize the deformations but their application is limited because too
rigid a structure would initially be difficult or impossible to tune. An active scheme,
first introduced at TESLA, uses a piezoelectric device to dynamically tune the cavity.
The physical principle of piezoelectric devices is based on the property of certain crys-
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Figure 2.2: (a) Amplitude of the surface magnetic field and surface
electric field versus the longitudinal position in the SNS high beta
cavity. The peak surface electric field is set to its nominal value of
35 MV/m. (b) Radiation Pressure versus the longitudinal position
in the SNS high beta cavity.

tals to mechanically deform when a voltage is applied. The mechanical movement of
the piezoelectric transducer can be transmitted to the cavity to deform its surface and
therefore to change its frequency. Ideally, the piezoelectric should create a frequency
variation exactly opposite to the Lorentz detuning during the beam pulse (and possi-
bly during the RF turn on transient). If the Lorentz detuning is properly cancelled by
the piezoelectric tuner action, the cavity frequency remains stable during the beam
pulse and the cavity operation is optimal. The piezoelectric is installed outside of the
helium vessel but inside of the cryomodule and is consequently operated at cryogenic
temperature (see Fig. 2.3). The range of motion of a piezoelectric device is severly
reduced when the temperature is lowered from room temperature to cryogenic tem-
perature. It is therefore necessary to choose a piezoelectric tuner with enough stroke
margin to insure proper tuning capability at low operating temperatures. In the SNS
for example, the desired static tuning range for the piezoelectric is approximately 2
Khz. Some concerns exist about the lifetime of a piezoelectric transducer operating
in a radiative environement such as a SRF cavity where gamma-radiation from field
emission and possible beam-loss exist. Encouraging results from tests performed by
the DESY group showed that the expected lifetime will cover their twenty years ma-
chine operation [31]. Similar tests were done at JLAB for the piezoelectric that will
be used in the SNS medium beta cavities and there also, no degradation of perfor-
mances were observed for an equivalent lifetime radiation dose [29]. In conclusion,
it appears that the radiations damage is not a limit to the use of piezoelectrics. For
the active compensation, the input voltage profile of the piezoelectric needs to be
controled in order to generate a dynamic detuning approximately equal and opposite
to the Lorentz detuning. Because the detuning generated by the Lorentz forces will
be repetitive in steady state, it is in principle possible to optimize the input voltage
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profile of the piezoelectric (see Section 2.5). The coupling of the piezoelectric to the
cavity is inherently different than the coupling of the Lorentz forces because the action
of the piezoelectric is local whereas the action of the radiation pressure is distributed
along the structure. For example, the piezoelectric mounted in the SNS medium beta
cavities are coupling to the longitudinal modes but not to the transverse modes. To
study the optimization of the piezoelectric input voltage waveform, modeling of the
cavity system is needed and should include such considerations.

Figure 2.3: Piezoelectric tuner installed in the SNS medium beta
cryomodule. The piezoelectric device (left) is installed at one of the
cavity end cells (right).

2.1.3 Microphonics

Microphonics characterize any random source of vibrations. They can originate for ex-
ample from the ground vibrations, from the cryogenic system (variation of the helium
pressure...), or from the surrounding equipement (vaccum pumps, water pumps...).
At high accelerating gradient, the amplitude of the microphonics detuning is usu-
ally much smaller than the detuning created by the radiation pressure. Nevertheless,
for cavities with low beam loading and high Qex, the microphonics are a concern,
especially if the cavities are operated in CW. The microphonics are caused by un-
predictable sources of mechanical vibrations but their main spectrum components
are of low frequencies, it is possible to compensate microphonics detuning by au-
tomized piezoelectric tuners [40]. In the cryomodule tests carried by JLAB on the
SNS medium beta prototype cryomodule, measurements of the detuning associated
to microphomics have been performed and found to be small compared to the half-
bandwidth of the cavity ω1/2. For this cavity, the nominal Qex is equal to 7.105 which
corresponds to a half-bandwidth of f1/2 = 575Hz. For the microphonics detuning, the
measured σ of the density probability distribution is inferior to 10Hz [29]. Therefore
the impact of the microphonics is small, but further measurements will be needed in
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the linac tunnel where the cavities will be installed, because the microphonics depend
on the local environment.

2.2 Modeling for the cavity RF voltage

The modeling of a cavity dynamics includes two distinct and coupled models. The
first concerns the electromagnetic aspect of the problem and is the modeling of the
cavity voltage behavior when the cavity is dynamically detuned. This aspect will be
studied in this section. The second is the modeling of the detuning itself and is related
to the mechanical aspect of the problem which will be studied in Section 2.3. For the
electromagnetic part, the cavity is usually represented by a parallel resonant circuit
model [21, 22]. In this representation it is possible to have a relation between the
RF and beam current source amplitudes and phases, the dynamic detuning, and the
cavity voltage amplitude and phase. This relation provides a better understanding
of the cavity voltage behavior under dynamic detuning, and can be useful for the
optimization of the cavity operation. First, the general analytic expression of the
cavity voltage envelope as a function of the current sources and the detuning is derived
in an integral form. This general expression includes dynamic detuning of the cavity
and time-varying amplitudes and phases of any current sources. Second, different
cases where the integral can be analytically solved are presented. The voltage behavior
is shown for different types of dynamic detuning functions and RF current functions
either in the time domain or as a complex mapping of the complex frequency (see
Annex A.2 for explanations). Third, a simple semi-analytical scheme is introduced
to calculate the cavity voltage envelope in any practical case. Fourth, the general
analytical expression for the voltage envelope as a function of the source current is
reinterpreted in two other usefull manners. The first one is to express the source
current as a function of the voltage envelope and of the dynamic detuning. With
such an interpretation it is for example possible to find various RF control schemes
for the build up of the voltage during the turn on transient period for a cavity under
dynamic detuning. These schemes will be illustrated in the case of a simple dynamic
detuning function. The second reinterpretation is to have the dynamic detuning as
a function of the cavity voltage and the source current. From this formulation, it
is possible to deduce the dynamic detuning by measuring the voltage and the RF
forward power. This could be of practical use for the estimation of the dynamic
detuning during the cavity operation.

2.2.1 Integral formulation for the voltage of a cavity under

dynamic detuning

In the usual parallel resonant circuit model and in absence of dynamic detuning, the
parameters of the resonant circuit are constant through time. In a more general case
when the capacitance C(t) and the inductance L(t) are slowly varying in time and
when the loaded shunt impedance RL is constant, the differential equation for the
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accelerating mode voltage is

C(t)V̈ (t) +
1

RL
V̇ (t) +

1

L(t)
V (t) = İ(t) (2.2)

where V is the voltage of the accelerating mode along the cavity axis and where I is
the excitation current given by the linear composition of the RF source current IRF
and the beam current Ib. Dividing Eq. (2.2) by C(t) and introducing usual cavity
parameters gives

V̈ +
ωc
QL

V̇ + ω2
cV = ωc

RL

QL
İ (2.3)

where the angular frequency of the cavity ωc =
√

1
LC

and the loaded Q of the cavity

QL = RL

√

C
L

are time dependent. Introducing the time dependent frequency detun-

ing parameter ∆ω = ωc − ω, using the half bandwidth of the cavity ω1/2 = ωc
2QL

, and
writing the current and the voltage as the products of a complex envelope and an
oscillating term following the RF frequency ω as I = Ĩ(t)ejωt and V = Ṽ (t)ejωt, Eq.
(2.3) can be rewritten as

¨̃V + 2(ω1/2 + jω) ˙̃V + (2ω(∆ω + jω1/2) + ∆ω2)Ṽ = 2RLω1/2(
˙̃I + jωĨ)

For systems with loaded Q much larger than the unity, QL >> 1 , the half bandwidth
is much smaller than the oscillation frequency, ω1/2 << ω . Considering only the case
where the cavity detuning is small compare to the RF frequency, ∆ω << ω , and
where the source current envelope contains only slow frequency components compared

to the RF frequency, | ˙̃I| << |ωĨ| , the previous equation can be approximated by

1

2jω
¨̃V + ˙̃V − jω̃Ṽ = RLω1/2Ĩ (2.4)

with the complex frequency ω̃ = ∆ω + jω1/2 . Under the previous assumptions
and considering the case where the detuning frequency contains only slow frequency
components compared to the RF frequency, |∆̇ω| << |ω∆ω| , the second order term
can be assumed negligible and Eq. (2.4) approximated by the first order equation

˙̃V − jω̃Ṽ = RLω1/2Ĩ (2.5)

The solution of Eq. (2.5) will be shown to be, in good approximation, a solution
of Eq. (2.4). In Eq. (2.5), the term RLω1/2 can be approximated constant through
time because its variations are negligible compared to its initial value. Therefore the
complex frequency ω̃ can be considered as the only time varying parameter. As shown

in [25] the RF current and the beam current are explicitely given by IRF =
√

8PRF
RL

,

where PRF is the forward power from the RF source, and Ib = 2IDC, where IDC is
the DC component of the beam (In the case of a cavity in pulsed operation, the DC
current is only calculated during the beam-on time). The solution of Eq. (2.5) is the
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sum of the source free voltage ṼSF , solution of the homogenous equation, and the
driven voltage solution ṼI , particular solution.

Ṽ = ṼSF + ṼI (2.6)

Separating the variables for the homogenous part of Eq. (2.5) leads to

dṼSF

ṼSF
= jω̃dt

Integrating each side gives the expression for the source free voltage in the case of a
time varying frequency

ṼSF = Ṽ0 e
j
∫ t
0
ω̃(t′)dt′ (2.7)

where Ṽ0 is the initial state of the cavity voltage envelope. When the driving current
is applied for a small amount of time dt′ , the derivative of the driven voltage solution
is equal to RLω1/2Ĩ . As a result the driven voltage envelope is changed by an amount

dṼI = RLω1/2Ĩdt
′ (2.8)

This constitutes the immediate response of a cavity to a sudden impulse. The evo-
lution of the voltage created by a sudden impulse is equivalent to the evolution of a
voltage initially present in the cavity as stated in Eq. (2.7). Using the superposition
principle, the current source is seen as a succession of impulses in time and the driven
voltage is expressed by a convolution integral.

ṼI = RLω1/2

∫ t

0

Ĩ(t′)ej
∫ t
t′ ω̃(t′′)dt′′dt′ (2.9)

Using Eq. (2.6), Eq. (2.7) and Eq. (2.9), the total cavity voltage can therefore be
written as

Ṽ = Ṽ0 e
j
∫ t
0
ω̃(t′)dt′ +RLω1/2

∫ t

0

Ĩ(t′)ej
∫ t
t′ ω̃(t′′)dt′′dt′ (2.10)

This expression can be used in order to confirm that the second order derivative term
of Eq. (2.4), under the stated assumptions, plays a negligible role, see Section A.1.
Eq. (2.10) constitutes the integral formulation of the cavity voltage solution in the
case of a time varying complex frequency and a time varying complex source current
envelope. The first term concerns the behavior of the voltage initially present in
the cavity. The real part of the integral under the exponent represents the overall
rotation angle due to the detuning and the imaginary part corresponds to the decay
of the voltage amplitude. The second term is the voltage induced by the current. It is
the sum of all the induced successive voltage impulses. Since the current is assumed
non constant in time it remains under the integral. The rotation angle and amplitude
decay of an induced voltage impulse are evolving from the time the impulse originates.
This fact is included in the boundaries of the integral for the complex frequency.
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2.2.2 Application to different cases of dynamic detuning and

RF current functions

The Eq. (2.10) is the general integral formulation for the cavity voltage envelope in
presence of dynamic detuning and a time varying driving current. Obtaining a more
explicit analytical expression for a given set of current and detuning functions {Ĩ , ω̃}
is a matter of solving the integrals. Some examples where the integrals can be solved
are presented and illustrated. The behavior of the complex voltage envelope will be
presented in the time domain and as a complex mapping of the complex frequency,
see Annex A.2.

I Constant detuning and constant current envelope

ω̃(t) = ω̃0

Ĩ(t) = Ĩ0

Ṽ (t) = Ṽ0 e
jω̃0t + jRLĨ0

ω1/2

ω̃0
{1 − ejω̃0t}

(2.11)

This is the simplest situation, the driving current and the detuning are constant
through time. When the detuning is constant it is usually called static detuning.
This situation is also a good approximation when the dynamic detuning is negligible
compared to the half bandwidth of the cavity. As a first illustration, the development
of the voltage amplitude and phase can be presented in time for a few detuning values
(see Fig. 2.4). The results for the amplitude are normalized with respect to the value
of the voltage in steady state for the on resonance case. After a few τ1/2, the voltage
reaches its steady value. The profile of the cavity voltage amplitude and phase in
steady state with respect to the detuning are presented in Fig. 2.5. The previous
results can also be presented as a mapping of the initial frequency line, see Annex A.2.
The normalized mapping is obtained from Eq. (2.11) and illustrated in Figure 2.6 for
four different instants in time. Since the phase of the driving current is constant and
since no detuning occurs, the point corresponding to ∆ω0 = 0 always remains on the
real axis. As expected from the analytical solution of Eq.(2.11), the real axis is a line
of symmetry for the positive and negative values of the detuning. In steady state the
map forms a circle figure equivalent to the well-known impedance figure for a narrow
bandwidth resonator. In the first picture of Fig. 2.6, corresponding to t = 0.7τ1/2
, the point ∆ω0 = 0 is halfway between the origin and its position in steady state.
This is consistent with the expected value, since 1 − e−ω1/2t = 1 − e−0.7 ≈ 0.5. This
gives an insight on how the mapping can easily give some graphical representation
and estimation of the considered case.
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Figure 2.4: development of the voltage amplitude (normalized) and
phase (rad) through time for few cases of static detuning. The time
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steady state as function of the value of the static detuning. The
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Figure 2.6: Mapping of the normalized quantity Ṽ (t)

RL Ĩ0
, at four

different times for the case of a constant frequency, ω̃(t) = ω̃0 , and
a constant current envelope, Ĩ(t) = Ĩ0 .

II Constant detuning and exponential current envelope

ω̃(t) = ω̃0

Ĩ(t) = Ĩ0 e
jω̃I t

Ṽ (t) = Ṽ0 e
jω̃0t + jRLĨ0

ω1/2

ω̃0 − ω̃I
{1 − ej{ω̃0−ω̃I}t}

(2.12)

As before, such a case can occur if the dynamic detuning is negligible compared
to the half bandwidth. The frequency ω̃I of the current function Ĩ is complex so
that amplitude variations and phase variations are both included. The phase here is
varying linearly whereas the amplitude is varying exponentially. Both cases can be
of practical interest. From the exponential variation it is easy to derive the case of
linear amplitude variation. The mapping is obtained from Eq. (2.12). The result
is largely related to the previous mapping. For the frequency ω̃I = <(ω̃I) + j=(ω̃I)
the new mapping can be obtained by translating the frequency domain by −ω̃I ,
performing the previous mapping, then rotating it by an angle equal to <(ω̃I)t and
finally expanding it by a factor equal to e−=(ω̃I )t. As an example, the case ω̃I = ω1/2 is
displayed in Figure 2.7. The mapping is the same as in the previous case but rotated.
For t = 3.1τ1/2 the rotation angle is expected to be <(ω̃I)t = ω1/2

3.1
ω1/2

≈ π, as shown
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in the third picture. For the illustrated example, the amplitude of the mapping is
unchanged because the frequency ω̃I is purely real. Beside the global rotation of the
figure, the reference points have moved along the mapping line. For example the
detuning ∆ω0 = ω1/2 occupies the same position on the map as the point ∆ω0 = 0
on the previous map. This is consistent with the translation of the frequency domain
by −ω̃I = −ω1/2.

Figure 2.7: Mapping of the normalized quantity Ṽ (t)

RL Ĩ0
, at four

different times for the case of a constant frequency, ω̃(t) = ω̃0 , and
an exponential current envelope, Ĩ(t) = Ĩ0 e

jω̃I t . For the displayed
case ω̃I = ω1/2 .

III Linear detuning and constant current envelope

ω̃(t) = ω̃0 + ω̇0t

Ĩ(t) = Ĩ0

Ṽ (t) = Ṽ0 e
j{ω̃0+

ω̇0t
2

}t

−RLω1/2Ĩ0

√

π

2

{

j

ω̇0

}1/2

e
j
ω̃2
0

2ω̇0 ej{ω̃0+
ω̇0t
2

}t
{

Erfi

(

j3/2

√
2ω̇0

˜ω(t′)

)}t′=t

t′=0

(2.13)

In the case of linear dynamic detuning, the integral of the complex frequency in
Eq. (2.13) leads to a phase varying as the second power of time. Therefore the
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integral for the voltage can be expressed with the error function. As in the case of
constant detuning an expression for the case of an exponential current function is
also possible. Because the linear detuning case can be solved analytically, it is a tool
of interest to benchmark a numerical routine used to solve more complicated cases.
The mapping function, obtained from Eq. (2.13), is much more complex than in the
cases of a constant frequency, but nevertheless the mapping leads to a rather simple
interpretation. The case ω̇0 = −0.5ω2

1/2 is illustrated in Figure 2.8. The first picture
is the mapping at an early time. This mapping looks very similar to the previous
ones because the linear dynamic detuning effect is still small. On the second and
third pictures the detuning effect appears and the maps seem to be distorted when
compared to the maps for no dynamic detuning. Particularly the symmetry with
respect to the real axis is broken. This is understandable because the linear dynamic
detuning function is not acting symmetrically on the frequency domain. Since the
chosen value for ω̇0 is negative, the points are migrating clockwise on the mapping
line. After a long time the pattern of the map freezes. It eventually becomes the
equivalent of the trajectory for the values of ∆ω0 positive and large compare to ω1/2 .
All the reference points on the map are migrating towards the origin since in the case
of linear dynamic detuning all the frequencies are moving towards an infinite value.
The map is totally related with the manner that the dynamic detuning function is
affecting the initial detuning values with respect to the resonance region.

IV Sinusoidal detuning and constant current envelope

ω̃(t) = ω̃0 + ∆ωosc sin(ωosct + θosc)

Ĩ(t) = Ĩ0

Ṽ (t) = ω1/2RLĨ0

∫ t

0

ej
∆ωosc
ωosc

{cos(ωosct′+θosc)−cos(ωosct+θosc)}ejω̃0{t−t′}dt′
(2.14)

Because the detuning in SC cavities originates from mechanical vibrations of the
structure, the case of a sinusoidal detuning function is of direct interest. In Eq.
(2.14), ∆ωosc is the amplitude of the sinusoidal detuning and ωosc is the frequency of
its oscillations. No straightforward solution for the voltage envelope can be obtained
but an approximation of the solution is developed in Annex A.3. In steady state and
for the case with no initial detuning (∆ω0 = 0), it writes

ṼSST (θ) = RLĨ0e
−jσ cos(θ+θosc)

∑

n

P̃n(σ) cos θn cos(n{θ + θosc} − θn) (2.15)

with θ = ωosct, ψi =
ω1/2

ωosc
, σ = ∆ωosc

ωosc
, P̃n(σ) polynomes of σ with complex coefficients

given in Annex A.3,and tan θn = n
ψi

. As an example, the case ωosc = 4ω1/2, ∆ωosc =
ω1/2, and θosc = 0 is illustrated in Fig. 2.9. Since this dynamic detuning is a pure
sine function, the mapping shows reference points migrating counter clockwise and
clockwise alternatively. Because the voltage in steady state is a periodic function of
frequency ωosc, the mapping eventually becomes periodic in time. The periodicity
is visible in the fourth picture of the Fig. 2.9, where the closed trajectories for few
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Figure 2.8: Mapping of the normalized quantity Ṽ (t)

RL Ĩ0
, at four

different times for the case of a linear dynamic detuning, ω̃(t) =
ω̃0 + ω̇0t, and a constant current envelope, Ĩ(t) = Ĩ0 . For the case
displayed ∆ω̇0 = −0.5ω2

1/2 .

reference detuning points are drawn on top of the map. The sense of rotation for these
trajectories is noted with plus and minus signs. The symmetry of these trajectories
with respect to the real axis is linked to the symmetry property of the sinusoidal
dynamic detuning function. The extension of a trajectory depends on the amplitude
and on the frequency of the sine detuning function. Faster oscillations or smaller
amplitude generally mean smaller extensions.

These facts are illustrated in Fig. 2.10. On the first picture, four closed trajectories
of the voltage in the steady state are presented in the case of no initial detuning
∆ω0 = 0, a constant frequency of the detuning function ωosc = 0.5ω1/2, and for a
few values of the amplitude of the oscillations ∆ωosc. As stated, the extension of
the voltage trajectory enlarges with the amplitude of the detuning function. On the
second picture, four closed trajectories of the voltage are shown for the case of, no
initial detuning ∆ω0 = 0, a constant amplitude of the detuning function ∆ωosc =
ω1/2, and four different frequency of oscillations ωosc. As explained, the extension of
the voltage trajectories shrink as the frequency of the oscillations increases. When
the variations of the detuning are very slow compare to the cavity half-bandwidth,
ωosc << ω1/2, the voltage envelope has time to reach its steady state for every value
of the detuning. In this case, the voltage moves approximately on the static detuning
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Figure 2.9: Mapping of the normalized quantity Ṽ (t)

RL Ĩ0
, at four

different times for the case of a sinusoidal dynamic detuning, ω̃(t) =
ω̃0 +∆ωosc sin(ωosct+ θosc) , and a constant current envelope, Ĩ(t) =
Ĩ0. On the last picture the closed loops drawn on top of the map are
the steady state periodic orbits of a few points. The signs correspond
to the sense of rotation of these orbits. For the case displayed,
ψi = 1/4, σ = 1/4, and θosc = 0.

circle. As the variations of the detuning becomes faster than the time required for
the voltage to reach its steady state, the trajectory of the voltage becomes more
complicated. Eventually when the frequency of the detuning is much larger than the
half-bandwidth, ωosc >> ω1/2, the voltage does not have time to vary much during a
period of the detuning function and the extension of the voltage trajectory becomes
very small.

For each detuning frequency case, it is possible to calculate the minimum and the
maximum of the voltage amplitude and of the voltage phase closed trajectory. The
results are illustrated in Fig. 2.11. In this picture, the previously described behaviors
for the voltage are easily observable. When the frequency of the detuning is large,
the amplitudes of the oscillations for the voltage phase and amplitude become very
small. Also, the larger the amplitude of the detuning the bigger these amplitudes are.
In conclusion, for a SRF cavity under dynamic detuning, the behavior of the voltage
is crucially linked to the amplitude and the frequency of the detuning compared to
the half-bandwidth.
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Figure 2.10: Parametric plots of the close trajectory for the voltage
in steady state for various sinusoidal detuning conditions.

Figure 2.11: Minimum and maximum of the voltage envelope in
steady state for various sinusoidal detuning conditions

2.2.3 Other useful interpretations of the voltage equation

In Section 2.2.1, the integral solution for the cavity voltage was calculated from the
differential equation written in Eq. (2.5). Instead of solving the differential equation
to find the voltage as a function of the current source Ĩ and of the detuning ∆ω, it is
possible to transform it to have the current source as a function of the cavity voltage
and of the detuning, or to have the detuning as a function of the cavity voltage and
of the current source. Both transformations can be of interest. For example, the
first one allows the study of different cavity filling schemes and the second implies
that the dynamic detuning could be retrieved from the cavity voltage and forward
RF power signals (the relation between forward power and RF current amplitude is
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IRF =
√

8Pg
RL

). The two transformations and possible applications are presented next.

I Current source as a function of the cavity voltage and of the detuning

From Eq. (2.5) it is easy to obtain

ĨRF =

{ ˙̃V − jω̃Ṽ
}

RLω1/2
− Ĩb (2.16)

Eq. (2.16) can be useful for example, to obtain the RF forward power to insure
the steady state of the cavity voltage when the beam is on, to optimize the cavity
parameters ω1/2 and ∆ω0, or to study profiles of the feedforward RF source current

ĨRF (t) for different filling schemes of a cavity under dynamic detuning.
I.1) Required RF source ratings to maintain the voltage in steady state
When the beam is on, it is desired to maintain the cavity voltage in steady state.

This implies that ˙̃V = 0 in Eq. (2.16), and the required RF current ĨRF to keep the
voltage Ṽ unchanged is given by

ĨRF = − jω̃Ṽ

RLω1/2

− Ĩb (2.17)

I.2) Optimization of the cavity parameters in function of the beam current and the
synchronous phase
When the beam is on, the necessary ratings for ĨRF are given by Eq. (2.17). In
absence of dynamic detuning, the required RF power to maintain the voltage in steady
state can be minimized by choosing appropriate static detuning of the cavity and
appropriate Qex. As demonstrated in Appendix A.5, the values of these parameters
are

QLopt =
V

r
Q
Ib0 cos Φ

∆ωopt = − ω

2

r
Q
Ib0

V
sin Φ

(2.18)

The corresponding RF power is equal to

PRFopt = Ib0V cos Φ = Pb (2.19)

In such case all the forward power is transmitted to the beam and there is no reflected
power during the beam on time.

I.3) Additional RF power required for non optimal Qex and detuning
During the beam on time, the voltage must be kept at a given value. In Section A.5
it is shown that the required RF power to accelerate the beam can be minimized
by proper setting of the Qex and of the detuning of the cavity. Consequently, if
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the detuning is not set to such an optimum value, the required RF power increases.
The scaling of such additional RF power for non optimal values of the detuning is
calculated in Annex A.6 and is given by

δPRF
PRFopt

=
1

4

{

q2

1 + q
+ {1 + q}ε

}

(2.20)

Since the available extra RF power is limited in practice, some limits exists on the
tolerable values for the Qex and the detuning during the beam pulse. These limits are
calculable using Eq. (2.20). As two examples, the cases of the medium beta cavity
and of the high beta cavity for the SNS are presented. The calculations are done for
the cavity having the maximum beam loading in both cases. The H− beam current
is Ib0 = 26 mA. The beam power is Pb = 166 kW for the medium beta cavity and
Pb = 364 kW for the high beta cavity. The results are displayed in Fig. 2.12 and Fig.
2.13.

I.4) Filling schemes for a cavity under dynamic detuning
Eq. (2.16) gives the RF current in function of the voltage and of the detuning. As a
direct application, the settings for the RF source current to keep the voltage in steady
state during the beam on time was expressed in Eq. (2.17). For the pulsed operation
case, it is possible to extend the application and find RF current settings to shape
the voltage increase during the turn on transient. In the following, ton will refer to
the time when the RF is turned on, tinj to the time when the beam is injected, and
tend to the time when the beam pulse ends. The path to raise the voltage from zero
to Ṽinj is not unique. For each chosen path and detuning function, the RF current
settings are different as given by Eq. (2.16) with the beam current Ib taken equal to
zero. Four different possible filling schemes will be presented next.

I.4.a) Linear voltage amplitude and constant voltage phase
This filling scheme gives a very simple analytical expression for the voltage function
and insures a tight control of the voltage phase.

Ṽ (t) = Ṽinj
t

tinj
(2.21)

Using Eq. (2.16), it gives for the RF current

ĨRF (t) =
Ṽinj
RL

τ1/2
tinj

{1 − jω̃t} (2.22)

where τ1/2 = 1
ω1/2

and ω̃ = ∆ω + jω1/2.

I.4.b) Sinusoidal voltage amplitude and sinusoidal voltage phase
This filling scheme allows a smooth approach to the required voltage ratings near the
beam injection time.

Ṽ (t) = Ṽinj sinωf te
jΦon{1−sinωf t} (2.23)
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Figure 2.12: Acceptable region for the Qex and the detuning in the
SNS medium beta cavity (ε horizontal axis and q vertical axis). As-
suming a total available RF power PRFav = 410kW , for a beam
current Ib0 = 26mA, and Pb = 166kW , and for a cavity with
V = 6.8MV and r

Q
= 302 Ω. The optimum values for the Qex and

the detuning are QLopt = 9.2 105 with corresponding half-bandwidth
f1/2opt = 437Hz, and ∆fopt = 159Hz. The successive contours start-
ing from the red center region correspond to additional power of
0-10%, 10-20%,... of the available extra RF power. The most out-
ward contour encloses the acceptable limits for the parameters q
and ε (enclose the region where the additional power is ≤100% of
the available power).

where the filling frequency is defined by ωf = π
2tinj

so that the voltage reaches its

desired ratings at the injection time. The phase Φon, corresponding to the excursion
of the voltage phase between ton and tinj, is a free parameter. The RF current function
associated with the voltage function of Eq. (2.23) is given by

ĨRF (t) =
Ṽinj
RL

1

ωf tinj
ejΦon{1−sinωf t}{cosωf t{1 − jΦon sinωf t} − j

ω̃

ωf
sinωf t} (2.24)

I.4.c) Constant voltage phase and constant RF current amplitude
This filling scheme is hybrid. One constraint is related to the voltage and the other to
the RF current. Noting Ṽ (t) = V (t)eΦV (t) and ĨRF (t) = IRF (t)eΦRF (t), the constraints
can be written as

IRF (t) = Ion ; ΦV (t) = ΦVinj (2.25)
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Figure 2.13: Acceptable region for the Qex and the detuning in
the SNS high beta cavity (ε horizontal axis and q vertical axis).
Assuming a total available RF power PRFav = 490 kW , for a beam
current Ib0 = 26 mA, and Pb = 364 kW . The optimum values for
the Qex and the detuning are QLopt = 1.2 106 with corresponding
half-bandwidth f1/2opt = 343 Hz, and ∆fopt = 125 Hz.

The value of the parameter Ion is determined by the constraint that the voltage should
reach its amplitude at the time tinj.

I.4.d) Linear RF current amplitude and smooth RF transition at injection
All the previous filling schemes lead to the voltage Vinj at the beam injection time.
But each of them require a sudden jump in the settings of ĨRF at that time because
these settings, suddenly constrained to keep the voltage in steady state, are in general
not continuous at the end of the raising period. It is possible to find a filling scheme
that does not present such discontinuities. This means finding some RF current func-
tion that satisfies two purposes. First that the voltage reaches its required ratings
at tinj and second that the RF current settings are continuous at that time. The
continuity criteria can be express by

IRF (t−inj) = IRF (t+inj) = −jω̃(tinj)Ṽinj
RLω1/2

− Ĩb (2.26)

where t−inj and t+inj denote times just before and just after tinj. The RF current ĨRF (t)
can be for example chosen as a linear function

IRF (t) = ĨRF (tinj) + Ĩon{1 − t

tinj
} (2.27)
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The parameter Ĩon represents the initial value of the RF current and has to be deter-
mined so that the voltage at the injection time satisfies its desired ratings. The four
filling schemes referenced as a, b, c, and d, for respectively I.4.a), I.4.b), I.4.c), and
I.4.d), are illustrated in Fig. 2.14 and Fig. 2.15, in the case of a sinusoidal dynamic
detuning function.
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Figure 2.14: Development of the cavity voltage amplitude and
phase through time, for different filling schemes (a,b,c,d) in the SNS

medium beta cavity. The ratio V (t)
Vinj

is plotted for the amplitude. This

ratio should be equal to one after tinj. The difference ΦV (t) − ΦVinj

is plotted for the phase and it should be equal to zero after tinj
(tinj = 230 µs here). The beam on time is equal to 1 ms and only
a fraction of this time is displayed. A sinusoidal form was used for
the dynamic detuning function.

II Detuning in function of the cavity voltage and of the current source

It is possible to modify Eq. (2.5) and write

∆ω = −jω1/2

{

1 +
˙̃V

ω1/2Ṽ
− RLĨ

Ṽ

}

(2.28)

ω1/2 and RL are known parameters. The source current Ĩ(t) = ĨRF (t) + Ĩb(t) can
be obtained from the forward power information and from the beam current infor-

mations. Ṽ (t) and ˙̃V (t) can be deduced from the pick-up probe signal after proper
calibration. Using Eq. (2.28) it is possible to retrieve the detuning ∆ω(t) from the
measured data. The method to measure the detuning (without beam) by turning off
the RF feeding source, monitor the voltage phase evolution φV (t), and equate the
cavity detuning to the first derivative of the voltage phase ∆ω(t) = φ̇V , as in [25],
is only a particular case of Eq. (2.28). It should be mentioned that the real part of
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Figure 2.15: RF current amplitude and phase through time for
different filling schemes (a,b,c,d) in the SNS medium beta cav-

ity. The ratio IRF (t)
Ib cos Φ

is plotted for the amplitude. The difference

ΦIRF (t) − ΦVinj is plotted for the phase. The injection time is
tinj = 230 µs. The beam on time is equal to 1 ms and only a
fraction of this time is displayed. The dynamic detuning function in
this example is chosen equal to ∆ω(t) = ω1/2{1.3−0.9 cos(0.9ω1/2t)}.

the bracket term in Eq. (2.28) should be equal to zero at all time. Eq. (2.28) gives
a tool to monitor the dynamic detuning when some voltage signal is available in the
cavity. In pulsed operation for example, the cavity has no RF signal between beam
pulses and the method can not be applied, unless some small amplitude RF signal is
injected during this time. This restriction is not very important since the monitoring
of the detuning is primarily of interest during the RF turn on transient and within
the beam pulse time period.

2.3 Modeling for the dynamic detuning

In Section 2.2, the first aspect of the modeling of a cavity under dynamic detuning
regarding the RF voltage calculation has been presented. The second aspect is the
modeling of the cavity frequency detuning itself. The cavity shape deforms under
the action of Lorentz forces, piezoelectric forces, or microphonics action (variation
in the helium pressure for example). To this mechanical deformation corresponds a
variation of the cavity resonance frequency. To estimate the frequency detuning, a
mechanical model is necessary. Some mechanical models have been proposed to link
the Lorentz forces to the detuning [23, 24]. These models are rather simple and suc-
cessful approaches to represent experimental results quantitatively by estimating the
detuning with ordinary differential equations of the first or second order [32]. The
use of mechanical codes also showed interesting results [34] but parameters, particu-
larly for the mechanical damping, can not be accurately known from simulation codes
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and need to be adjusted by hand. Other than using extra RF power, some active
compensation schemes have been proposed to compensate the effect of the Lorentz
detuning [27, 28]. The scheme based on a dynamic adjustement of the frequency by a
piezoelectric tuner has been proven to be a viable choice [33, 29]. A first attempt to
include the frequency variation generated by the piezoelectric tuner in the modeling
process showed good agreement with experimental results [30]. Nevertheless, clear
differences between the Lorentz force action and the piezoelectric tuner action were
observed experimentally and remain to be clarified [31, 29]. For example, the differ-
ences in the phase profile of the respective transfer functions need to be explained.
For this purpose, a more qualitative modeling approach is proposed in the following.
This model leads to a simple explanation for the difference between the phase pro-
files of the respective transfer funtions but is also compatible with the simpler modal
approach using second order ODE.

2.3.1 Modeling by a vibrating string

The goal is to explain conceptually the main difference between the Lorentz force
action and the piezoelectric tuner action. To model the cavity wall by a vibrating
string seems an interesting choice because of its relative simplicity and because it
contains various aspects of the physics. Firstly, the amplitude of the vibrations are
small which is usually assumed in the vibrating string problem. Secondly, a string of
finite length with fixed boundary conditions will produce a modal basis equivalent to
the mechanical resonances of the cavity. Thirdly, some mode damping can be added to
reproduce the attenuation in time of the cavity mechanical mode vibrations. Fourthly,
distributed forcing, like the Lorentz forces, or local forcing, like the piezoelectric tuner
action, are both possible. Fifthly, the detuning can be connected to the vibrations
by integration of the transverse displacement over the longitudinal dimension of the
string.
Assuming a string of length l attached at its longitudinal extremities x = 0 and x = l
so that its transverse displacement u(x, t) at these locations are null at any instant
t; u(0, t) = u(l, t) = 0. Considering some possible damping forces proportional to the
time derivative of the transverse displacement and some driving forces continuously
distributed along the string and directed transversely. Assuming also that these
driving forces have separable spatial and time dependences. Under these conditions,
the transverse motion of the string satisfies a one dimension inhomogeneous damped
wave equation.

∂2
t u(x, t) + a∂tu(x, t) − c2∂2

xu(x, t) = g(x)h(t) (2.29)

where a is the constant damping parameter, c the speed of the wave along the string,
and g(x)h(t) the transverse force acting on the string with separated longitudinal and
time dependences. The separation between spatial dependence and time dependence
is true for the two considered sources of vibrations, Lorentz forces and piezoelectric
tuner forces. To complete the model an equivalent of the frequency detuning for the
vibrating string should be linked to the transverse displacement. In the case of a
cavity, the change in frequency created by a change in the resonator volume is given
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by the Slater formulation.

∆ω(t)

ω0
=

∫

∆vc(t)

ε0|E|2 − µ0|B|2 dv
∫

vc(0)

ε0|E|2 + µ0|B|2 dv (2.30)

where ∆ω is the variation of the cavity frequency, ω0 is the initial frequency of the
cavity, and where the quantities depending on the electric and on the magnetic fields
should be integrated over the initial volume of the cavity vc(0) and over the time
dependent variation of the cavity volume ∆vc(t). In the represention by a vibrating
string, the integration over a surface is equivalant to the the integration over a volume.
It is assumed that when the string is at its rest position, the dynamic frequency
detuning is null. The Eq. (2.30) can be rewritten

∆ω(t) =

∫

∆s(t)

∂ω

∂s
ds (2.31)

where ∂ω
∂s

is the frequency detuning sensitivity and ∆s(t) the variation of the surface
occupied by the string in comparison to its rest position as pictured in Fig. 2.16.
The electromagnetic fields depend on the position in the resonator but because the

Figure 2.16: Representation of the cavity dynamic detuning pro-
cess by a vibrating string. The transverse displacement u(x, t) is
equivalent to the deformation of the wall. Multiplying by the fre-
quency sensitivity e(x) and integrating along the string gives the
detuning ∆ω(t).

amplitude of the cavity wall deformations are small, the variation of the field ampli-
tudes in the neighborhood of the cavity surface are negligible. As a consequence, the
frequency sensitivity in the string representation can be considered as a function of
the longitudinal variable only and not of the transverse displacement. It follows that
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the integration over the surface can be replaced by an integration over the longitu-
dinal position. Doing so, the infinitesimal element of surface is decomposed as the
transverse displacement times the longitudinal infinitesimal element. Eq. (2.31) can
be rewritten as

∆ω(t) =

∫ l

0

u(x, t)e(x) dx (2.32)

where for convenience e(x) = ∂ω
∂s

(x). It is important to notice that the function e(x)
carries a sign information since from Eq. (2.30), the contributions of the magnetic and
electric fields to the frequency detuning, for the same volume variation of a volume,
are opposite. Eq. (2.29) and Eq. (2.32) constitute the essence of the vibrating
string approach which consists of estimating the detuning in two steps. The first step
relates the driving force to the transverse displacement and the second step links the
displacement to the frequency detuning. To proceed further, Eq. (2.29) has to be
solved. The solution of the wave equation is given in section A.7. The final result
shows that the movement of the string can be decomposed on a modal basis and
that the transverse displacement associated with each mode has separable spatial
and time dependences. The excitation level of a particular mode can be found by
projection of the forcing function on the mode spatial shape. The time dependence
of each mode is reducible to an ordinary and inhomogenous second order differential
equation. The result for the transverse displacement can be used in Eq. (2.32) to
find the corresponding detuning. In the next section, it is shown that the model for
the detuning can eventually be written as a system of ODEs.

2.3.2 System of ODEs for the detuning

I Solution for the dynamic detuning

It was shown in Section 2.3.1 that the detuning can be obtained from the transverse
displacement by integration, as written in Eq. (2.32). Introducing the parameter

zm =
∫ l

0
e(x) sin(Kmx) dx it follows

∆ω(t) =

∫ l

0

u(x, t)e(x) dx

=
∑

m

{

Um(t)

∫ l

0

e(x) sin(Kmx) dx
}

=
∑

m

zmUm(t)

=
∑

m

∆ωm(t)

(2.33)

In Eq. (2.33), the total detuning is decomposed to a sum over the detuning associ-
ated with each mechanical mode. Using the relation for the mth mechanical mode
∆ωm(t) = zmUm(t) in Eq. (A.38) and assuming also that the damping can be different
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for each mechanical mode leads to

¨∆ωm +
Ωm

Qm

˙∆ωm + Ω2
m∆ωm = Ω2

m

wmzm
Ω2
m

h(t) (2.34)

where for later convenience, the rigth side has been rewritten into an equivalent
form. In conclusion, the qualitative approach to the problem as a vibrating string is
compatible with the usual modeling by a system of second order differential equations.
The general solution of a second order differential equation is given by Eq. (A.47).
Applying it to the parameters of Eq. (A.38) gives

∆ωm(t) = ∆ω0,me
−ηmΩmt sin(µmΩmt + Φ0,m)

+
wmzm
µmΩm

∫ t

0

h(t′)e−ηmΩm{t−t′} sin(µmΩm{t− t′}) dt′
(2.35)

where ∆ω0,m =
√

C2
m +D2

m , Φ0,m = arctan(Cm
Dm

) , Cm = ∆ωm(0), and Dm =
∆ω̇m(0)+ηmΩm∆ωm(0)

µmΩm
. The first term on the right side of Eq. (2.35) corresponds to

the decay of the initial detuning due to the damping. The second term corresponds
to the detuning generated by the driving force. It is interesting to note that if the
forcing function h is periodic with period T (corresponding to frequency ω), then the
steady state detuning is also periodic with the same period. This can be proven by
first mentioning that in the steady state, only the second term remains. Then, be-
cause h(t) has period T , it is decomposable by a discrete fourier transform into a sum

of harmonics of period T . (for example it can be written h(t) =
∞
∑

n=0

gn cos(nωt+φn)).

According to the results of Section A.8, it is shown that any harmonic n of frequency
ω will lead, in steady state and for any mode m, to a detuning function of period nω.
Therefore the total detuning obtained by superposition is a sum of periodic functions
of period T and its harmonics. In consequence the detuning generated by a periodic
function h is also a periodic function of the same period.

II Difference in the coupling to the mechanical modes

In the described mechanical model for the dynamic detuning of a SC cavity, the
detuning was shown to satisfy a set of independent second order ODEs. In Eq. 2.34,
the driving term is proportional to wmzm which is the product of the projection on
the mth mechanical mode shape, of the physical driving force and of the frequency
sensitivity. In the case of a constant cavity voltage Vcav, the generated detuning is
static and usually noted ∆ω = −KV 2

cav where K is called the coupling coefficient (in
reality the detuning is commonly expressed with respect to the accelerating field ∆ω =
−KE2

cav , but a linear relation exists between E and V which makes the two forms
totally equivalent). From Eq. (2.33) it appears that there is not a unique coupling
coefficient but many coupling coefficients km = wmzm

Ω2
m

relating the applied force to the
different mechanical modes of the cavity structure. These coupling coefficients are
simply related to the static coupling coefficient by −K =

∑

m

km. In a cavity operated

in CW, the only relevant parameter is the static coupling coefficient K whereas in
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pulsed operation, particular attention should also be paid to possible mechanical
resonances occuring for modes which are harmonics of the repetition rate. In the
case of the Lorentz detuning, the physical force acting on the cavity originates from
the radiation pressure Prad = 1

4
{µ0|H|2 − ε0|E|2}. From the Slater formulation it

appears that the frequency sensitivity is actually proportional and of opposite sign
to the Lorentz force which in the vibrating string model translates to g(x) ∝ −e(x).
It follows that for the radiation pressure action wm ∝ −zm and that all the coupling
coefficients km are negative. In reality, this assertion is not exactely true because the
usual Slater formulation is only valid for the mechanical deformations near the cavity
surface but not for geometrical perturbations in the inter cells or in the beam pipe
regions as demonstrated in [37]. This consideration will be overlooked here and all
the coupling coefficients for the Lorentz forces action will be assumed negative. For
convenience it is possible to redefine all the coupling coefficients as positive and add
a negative sign to the driving term. Eq. (2.34) is then rewritten as

¨∆ωm +
Ωm

Qm

˙∆ωm + Ω2
m∆ωm = −Ω2

mkmV
2 ; km > 0 (2.36)

In contrast, for a cavity driven by a piezoelectric tuner, the driving forces are totally
independent of the electromagnetic fields. In consequence, the parameters wm and
zm are independent and the coupling coefficients km = wmzm

Ω2
m

can be positive for some
mechanical modes and negative for others. Assuming as a good approximation that
the piezoelectric force applied on the cavity is linear with a driving input voltage Vp,
the Eq. (2.34) can be written as

¨∆ωm +
Ωm

Qm

˙∆ωm + Ω2
m∆ωm = Ω2

mkmVp (2.37)

where the coupling coefficients km can be of both signs. The qualitive approach of the
problem gives a simple insight to the difference between the coupling of the Lorentz
force and of the piezoelectric tuner action to the mechanical modes. This considera-
tion is useful when attempting to extract mechanical parameters from measurements
with the help of the simulations as done section 2.4.

2.4 Comparison with experimental results from the

SNS medium beta prototype cavities

In the previous Sections, the basic constituents of the model for a SRF cavity under
dynamic detuning were presented. In this section, results of measurements performed
on the SNS medium beta prototype cavities are presented and compared to results of
the simulations. Particular emphasis is given to the extraction, from measurements,
of the mechanical parameters related to the action of the Lorentz forces and of the
piezoelectric tuner forces. This extraction procedure has two purposes, the first one
is to show that the model is compatible with measurements, the second one is to have
eventually a realistic virtual cavity that allows further study, such as the optimization
of the Lorentz detuning compensation using piezoelectric tuners.
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2.4.1 Detuning by the Lorentz forces

The equations for the voltage amplitude and phase are much simpler for a cavity
operated phase locked (see Section A.9). For example, the voltage amplitude is in-
dependent of the detuning and this fact simplifies the extraction of the mechanical
parameters associated with the radiation pressure action. As shown by Delayen [38],
the cavity can be excited in CW and small modulations of the RF current applied to
generate sinusoidal variations of the voltage amplitude which produce in turn sinu-
soidal variations of the Lorentz forces. The transfer function linking the RF current
modulations to the detuning is obtained by fixing the amplitude of the RF current
modulations and by sweeping the frequency of these modulations. The amplitude
and the phase of the transfer function are displayed in Fig. 2.17. The reconstruction
of the mechanical basis is performed using the result of Section A.9.2. As explained
in Section A.9.2, the value of the external Q can be deduced from the behavior of
the phase of the transfer function and it is found for the considered set of measure-
ments Qex = 2.106. The detuning and so the amplitude of the transfer function is
proportional to the coupling coefficients as written in Eq. (A.59). The values for
the coupling coefficients are scaled using the measured value for the static detuning
coefficient (sum of all the modal coupling coefficients as explained previously). It is
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Figure 2.17: Amplitude and phase of the measured [38] and re-
constucted transfer function associated with the Lorentz force in the
SNS medium beta cavity (Prototype cryomodule cavity #1)

interesting to notice that the amplitude of the transfer function, given by the ratio
of the AC components linked to the detuning and to the RF source, is independent
of the RF current modulation parameter ε. The mechanical parameters of the re-
constructed basis are listed in Table 2.1. As expected from the results of Section
2.3.2, all the coupling coefficients linked to the Lorentz force action have the same
sign. The transfer function was only measured up to 300 Hz and it appeared dur-
ing the reconstruction process that a non negligible response of the cavity should be
expected above such frequency. Whereas the frequencies and the Q’s of higher fre-
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quency modes are impossible to determin from the measured data, some information
concerning their coupling coefficients can be deduced from the low frequency part of
the transfer function. This is because for very low excitation frequencies, the con-
tributions from these unknowns modes add in phase. As a consequence, the sum of
the coupling coefficients of the remaining higher frequency modes is known. Also,
the modes above and rather close to 300 Hz seriously affect the phase of the transfer
function near and below this frequency and some informations about the unknown
modes can be determined from this. To reproduce properly the lowest frequency
part of the transfer function’s amplitude and the highest frequency part of transfer
function’s phase, a single mode at 320 Hz has been added. This mode is added only
to represent the effect of all the modes above 300 Hz and it should therefore not be
considered as accurate. It is important to remember that in Eq. (2.36) the variation
of the angular frequency is proportional to the square of the accelerating voltage, as
opposed to the usual expression of frequency change as a function of the square of the
accelerating gradient. Incidentally, the definition of the mechanical mode coupling
coefficients are different for both definitions.

Table 2.1: Mechanical parameters for the Lorentz force action in
the SNS medium beta prototype cryomodule cavity #1

m fL,m [Hz] QL,m
kL,m
2π

[Hz.MV−2] m fL,m [Hz] QL,m
kL,m
2π

[Hz.MV−2]
1 39 30 0.05 17 132.6 100 0.21
2 66.4 80 0.34 18 139 50 0.05
3 71.5 50 2.75 19 145 70 0.05
4 76.7 25 1.27 20 158 90 0.85
5 82.4 40 0.26 21 173.7 100 0.26
6 86.5 40 0.16 22 194 50 0.11
7 91.5 80 0.53 23 210 40 0.21
8 94.2 50 0.42 24 219 30 0.21
9 100 40 3.43 25 232 30 0.26
10 109 40 0.26 26 243.9 80 0.21
11 112 50 0.26 27 247.3 30 0.05
12 115 60 0.26 28 248 60 0.32
13 117.6 50 0.53 29 255 80 0.16
14 119 50 0.37 30 259 100 0.16
15 122 50 0.37 31 295 40 0.16
16 130 100 0.21 32 320 30 6.87

2.4.2 Detuning by the piezoelectric tuner

Based on the Telsa’s active compensation scheme of the Lorentz detuning, a piezo-
electric tuner has succefully been installed and tested on each cavity of a SNS medium
beta cryomodule [35]. A series of low power open loop measurements on the cavity #
2 were done to extract the mechanical parameters for the excitation of this cavity by
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a piezoelectric tuner and to check the validity of the modeling procedure. Once the
mechanical parameters are obtained, it is possible to use them to optimize and/or
auto maze the detuning compensation scheme. In the open loop measurement set-
ting, the cavity is excited in CW with a low power generator. The cavity voltage is
measured under various dynamic detuning conditions, and the results compared to
the simulations. In this experiment, the excited voltage in the cavity is very small
and the Lorentz forces are totally negligible.

I Basic excitation of the cavity

As a first mesurement, the basic behavior of the voltage in absence of dynamic detun-
ing is checked and the value of the cavity electromagnetic half-bandwidth is deduced.
The cavity is successively excited with different predetuning values. In each case
the value of the voltage amplitude is recorded. The measured voltage comes from
the signal of the field probe located in the beam pipe region of the cavity, and is
therefore not equal to the accelerating voltage. Since a linear relation exists between
them and since only relative behavior will be used in the following, no calibration
of the field probe is necessary. Three examples of the development in time of the
voltage amplitude for different values of the predetuning are presented in Fig. 2.18.
From Eq. (2.11), the value of the voltage amplitude in the steady state is equal to

VSST (∆ω0) = RLI0

{

1 +
∆ω2

0

ω2
1/2

}−1/2

. Normalizing it with respect to the voltage for the

on-resonance case VSST (0) = V0 = RLI0 gives VSST (∆ω0)
V0

=

{

1 +
∆ω2

0

ω2
1/2

}−1/2

. For each

Figure 2.18: On the left, measured (red curve) and simulated (blue
curve) development of the cavity voltage for different values of the
initial predetuning. On the right, resonance curve of the steady
state voltage amplitude (normalized) as a function of the predetun-
ing value. The dots are measured values, the continuous curve is the
result from simulations.
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predetuning case, the value of the voltage in steady state is recorded and the results

are compiled to generate the resonance curve of Fig. 2.18. Since
VSST (ω1/2)

V0
= 1√

2
, it

is possible to deduce the cavity half-bandwidth value from the amplitude resonance
curve, it is found f1/2 =

ω1/2

2π
= 950Hz. Using this value, it is possible to compare

measured and simulated results. As displayed in Fig. 2.18, the agreement between
the measured and the simulated development of the voltage is good and the value of
the cavity half-bandwidth will be used in the following simulations.

II Mechanical parameters for the piezoelectric excitation

In the Section 2.4.1 the mechanical parameters in the case of the radiation pressure
were investigated using the results of the transfer function linking the modulations
of the RF source forward power and the frequency detuning response. In order to
extract mechanical parameters, the transfer function linking the piezoelectric input
voltage amplitude modulations and the cavity voltage phase response is measured in
an open loop setting. The amplitude of the sinusoidal piezoelectric input voltage was
equal to 7.6 mV (before amplification) and the frequency of the excitation was swept
in the interval [20Hz;600Hz], the corresponding measured transfer function for the
voltage phase is presented in Fig. 2.19. The transfer function was measured only up
to 600 Hz because no significant mechanical mode was observed above this frequency.
But as shown in Section 2.5, the Lorentz detuning in the nominal operation of the
SNS medium beta cavity seems to contain non negligible contribution from frequency
component higher than 600 Hz and it could in therefore be of interest to use results
of the piezoelectric transfer function above this frequency. The transfer functions
for the piezoelectric and the Lorentz forces show rather different behaviors. First,
the positions of the dominating resonances are not identical (further measurement
by JLAB of the piezoelectric transfer function for the cavity #1 confirms this point),
which can be a direct consequence of the large differences in the coupling of the
piezoelectric action and of the Lorentz forces action to the cavity structure. Second,
the phase of the transfer function for the radiation pressure action remains bounded
in an interval equal to π whereas for the excitation with the piezoelectric this phase
occupies the entire 2π interval. This can be explained by the fact that the coupling
coefficient for the piezoelectric action can be of both signs. In Section A.8, it is shown
that the phase of the solution to a second order ODE with respect to a harmonic
driving term passes from 0 to −π as the frequency of the oscillatory excitation is swept
from small values to large values compared to the mode frequency. This passage is
displayed in Fig. A.7. The transfer function of the piezoelectric shows the phase of the
signal φV (t) (cavity voltage phase) with respect to the applied sinusoidal piezoelectric
input voltage Vp(t). The driving term for the mth mode is in reality Ω2

mkmVp. This
means that when the coupling coefficient km is positive, the phase is within the
interval [0;−π] when the mth resonance mode is crossed. On the other hand, when
km is negative, the phase with respect to the driving voltage contains an additionnal π
phase shift and the interval for such coupling coefficient is [−π;−2π]. In consequence,
the phase of the transfer function can occupy the entire 2π interval. Using the fact that
the coupling coefficients can be of both signs, the mechanical basis associated with the
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Figure 2.19: Measured and simulated transfer function (ampli-
tude and phase) for the action of the piezoelectric tuner in the SNS
medium beta cavity (Prototype cryomodule cavity #2). The input
signal is the sinusoidal modulation of the piezoelectric tuner input
voltage VP (t), the output signal is the voltage phase φV (t). The
amplitude of the transfer function (on the left) is the ratio of the
amplitude of the output signal and the amplitude of the input sig-
nal. The phase of the transfer function (on the right) is the phase
difference between the output signal and the input signal.

piezoelectric tuner action can be reconstructed from the measured transfer function.
This transfer function contains in reality two distinct parts, the first is the excitation
of the mechanical modes by the piezoelectric forces which produces a detuning, and
the second is the influence of this dynamic detuning on the cavity voltage. Since
both aspects are included in the simulations it is possible to use these one to find
the mechanical parameters of the modal basis associated to the piezoelectric tuner
action. The analytical results of Annex A.3 are used and consequently simplify the
reconstruction of the mechanical basis. For the fitting procedure 29 modes are used
and their characteristic parameters are presented in Table 2.2. As in the modeling
procedure presented in Section 2.3.2, the modes are assumed to be uncoupled and
acting in parallel. The resulting simulated transfer function using this modal basis is
presented in Fig. 2.19. It is interesting to note that to reproduce the deep notch in
amplitude and the phase behavior occuring between 170Hz and 236Hz, it is necessary
to add a mode with small negative coupling coefficient around 200Hz. Without it,
the notch still exists, since it mainly originates form the interference of the 170Hz
and 236Hz modes contributions, but it is less pronounced and the simulated phase
would not be correctly reproduced. With the extracted parameters it is possible to
predict the detuning and the voltage behavior for any driving piezoelectric tuner input
voltage waveform (in reality only Fourier components lower than 600Hz are taken
into account in the simulations since the mechanical basis was only reconstructed
up to this frequency). As a test, the behavior of the voltage phase is measured
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Table 2.2: Mechanical parameters for the piezoelectric action in
the SNS medium beta prototype cryomodule cavity # 2

m fP,m [Hz] QP,m kP,m [Hz.mV−1] m fP,m [Hz] QP,m kP,m [Hz.mV−1]
1 75.5 200 -0.1 16 429.7 250 0.072
2 101.5 80 -0.05 17 440.5 100 0.04
3 152.8 260 -0.07 18 460 30 -0.05
4 168.5 120 -1.3 19 474 130 0.04
5 200 25 0.042 20 479 200 0.015
6 236.5 100 -0.45 21 485 100 0.04
7 245.1 100 -0.3 22 495 200 0.005
8 252.7 40 -0.24 23 517 50 0.06
9 272.6 40 -0.27 24 548 50 0.05
10 299.5 40 -0.15 25 558 250 0.05
11 319 100 0.07 26 563 300 0.015
12 355.5 100 0.1 27 570 300 0.025
13 365.7 40 0.12 28 587 160 0.1
14 383 100 -0.05 29 601.2 250 0.04
15 419 80 0.08

and simulated for two square waveforms of the piezoelectric input voltage, pulsed at
respectively 10Hz and 50Hz. The characteristics of those waveforms and the results
from both measurements and simulations are presented in Fig. 2.20 and Fig. 2.21.
The agreement between the measured and simulated behaviors of the voltage phase
comforts the results obtained for the parameters of the reconstructed mechanical
modal basis, validates the modeling approach and shows that the simulations can be
used for further investigations. They can for example be used for the study an active
compensation scheme of the Lorentz detuning by a piezoelectric tuner as proposed in
Section 2.5.

2.5 Study of the compensation of the Lorentz dy-

namic detuning

The Lorentz detuning in elliptical superconducting cavities can affect the coupling
between the resonant cavity and the RF feeding source and be a source of concern in
regard of the stability of the accelerating voltage. In pulsed operation, this detuning is
dynamic and the frequency of the cavity can change even during the flat top duration
of the beam. To compensate this effect, the RF control system can adjust the RF
source power amplitude and phase in order to insure the stability of the cavity voltage
ratings when the beam is on. It was seen in Section 2.2.3 that such control requires
additional RF power which can become a serious issue if the available power margin
is not large and/or if the klystron source needs to be operated in its non linear
region. Such problems can be overcome by using an active piezoelectric tuning. In
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Figure 2.20: Left: Square waveform of the piezoelectric input volt-
age pulsed at 10 Hz (200 mV before amplification, 1 ms pulse with
100 µs rise and decay time). Right: Measured and simulated (us-
ing the reconstructed modal basis) variations of the voltage phase
through time. The signal is repeatable 10 Hz.
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Figure 2.21: Left: Square waveform of the piezoelectric input volt-
age pulsed at 50 Hz (200 mV before amplification, 1 ms pulse with
100 µs rise and decay time). Right: Measured and simulated (us-
ing the reconstructed modal basis) variations of the voltage phase
through time. The signal is repeatable 50 Hz.
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Section 2.3, the modeling of the detuning was approached qualitatively by viewing the
vibrations of the cavity surface as the vibration of a string and it was shown that the
detuning could be represented by the superposition of mechanical modes, each mode
satisfying a simple second order ODE. Since a sinusoidal excitation of given frequency
for the piezo input voltage creates, in the steady state, a sinusoidal detuning of the
same frequency, it is possible to consider a compensation scheme using a piezoelectric
input voltage signal only composed of harmonics of the repetition rate. This method
will be detailed in the following section and applied to the case of the SNS medium
beta cavity.

2.5.1 Compensation scheme based on harmonics of the rep-

etition rate

The following method is applicable for the compensation of the Lorentz detuning
because in the steady state and for a given cavity voltage development profile, the
Lorentz detuning is a periodic function with a period equal to the repetition rate.
Calling the Lorentz detuning function ∆ωL(t) and noting the angular frequency as-
sociated with the repetition rate ωrep, a discrete fourier transform of the detuning
function in the steady state gives only harmonics of ωrep.

∆ωL(t) =
∞

∑

n=0

∆ωL, n cos(nωrept+ φL,n) (2.38)

where ∆ωL, n and φL,n are the amplitude and the phase of the nth harmonic of
the repetition rate. To compensate ideally for the Lorentz detuning, the detuning
∆ωP (t) generated by the piezoelectric should be of equal amplitude and opposite
sign, ∆ωP (t) = −∆ωL(t). Since the detuning produced by the piezoelectric can be
decomposed on a mechanical basis with each mechanical mode satisfying a second
order ODE, and since the driving term for these differential equations are propor-
tional to the input voltage VP of the piezoelectric tuner, it follows that VP should
also be a function of period equal to ωrep. Taking the discrete Fourier transform of
this function, it is possible to write

VP (t) =
∞

∑

n=0

VP, n cos(nωrept + θP,n) (2.39)

According to Section A.8, such forcing function will produce, in the steady state, a
piezoelectric detuning function of the type

∆ωP (t) =

∞
∑

n=0

∆ωP, n cos(nωrept + φP,n) (2.40)

To compensate exactly for the Lorentz detuning it is necessary to have ∆ωP, n =
∆ωL, n and φP,n = φL,n + π. From Section A.8, the solution for each harmonic of the
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forcing function VP is obtainable by summation on all the mode contributions. Using
the result of Eq. (A.50) gives

∆ωP (t) =

∞
∑

n=0

∞
∑

m=1

VP,n
ΩP,m

ωn

kP,mQP,m
√

1 + tan2 ψP,n,m
cos(nωrept+ θP,n + ψP,n,m − π

2
) (2.41)

where the parameters of the mth mechanical mode related to the piezoelectric action
are denoted ΩP,m, kP,m, QP,m and where the phase ψP,m follows the same definition
than in Eq. (A.50). Combining the results of Eq. (2.41) and Eq. (2.40) leads to

an =
∞

∑

m=1

ΩP,m

ωn

kP,mQP,m
√

1 + tan2 ψP,n,m
cos(ψP,n,m − π

2
)

bn =

∞
∑

m=1

ΩP,m

ωn

kP,mQP,m
√

1 + tan2 ψP,n,m
sin(ψP,n,m − π

2
)

∆ωP, n =VP,n
√

a2
n + b2n

φP,n =θP,n + arctan(
bn
an

)

(2.42)

It eventually gives for the amplitude and phases of the nth harmonic of the piezoelec-
tric input voltage

VP,n =
∆ωL, n

√

a2
n + b2n

θP,n =φL,n + π − arctan(
bn
an

)

(2.43)

It should be pointed out that if the transfer function linking the piezoelectric to
the cavity detuning is known, the extraction of the mechanical parameters for the
piezoelectric tuner action is not required in order to find the coefficients VP,n and θP,n.
For example when the piezoelectric input voltage is of the form VP (t) = Va sinωt, the
induced detuning is of the form ∆ωP (t) = ∆ωa(ω) sin(ωt + φa(ω)). If the the ratio
ωa(ω)
Va

and the phase φa(ω) are known for all the harmonics of the repetition rate,
the amplitudes VP,n and the phases θP,n of the piezo input voltage needed for the
compensation are then given by

VP,n =
∆ωL, n

∆ωa(nωrep)
Va

θP,n =φL,n + π − φa(nωrep)

(2.44)

The transfer function linking the cavity voltage phase to the input voltage of the
piezoelectric tuner is also sufficient, because a simple numerical routine using the
results of Annex A.3 can be written to obtain the transfer function linking the cav-
ity detuning and the input voltage of the piezoelectric tuner (such procedure was
implicitly done in section 2.4.2).
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2.5.2 Illustration of the compensation scheme

Since the primarly goal is to compensate for the Lorentz detuning only when the beam
is on, the compensation function need not to be continuously defined through time.
When the beam is off, the detuning compensation function can be chosen arbitrarily.
Also, the compensation function can be close but not exactly equal and opposite to
the Lorentz detuning function. To illustrate the method described in Section 2.5.1,
the case of the SNS medium beta cavity will be considered. Measurements performed
at JLAB on the SNS medium beta prototype cryomodule cavity #1, showed the
Lorentz detuning profile displayed in Fig. 2.22 [29], for a cavity accelerating voltage
profile close to the nominal one (shape, amplitude , 60 Hz repetition rate). The
detuning was observed to be repeatable at 60 Hz as expected. In Fig. 2.23, the
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Figure 2.22: Measured [29] Lorentz detuning function in the SNS
medium beta prtotype cryomule cavity #1, in pulsed operation close
to nominal conditions. The initial part of the measured signal is due
to a parasitic signal. The real detuning function is extrapolated and
plotted on top of the measured signal.

Lorentz detuning function is null after the RF pulse because the measurement of the
detuning was only possible when a RF voltage signal was available in the cavity. As
anticipated, the Lorentz force detuning is dynamic and does not exactly follow the
RF voltage development. Some high frequency components (higher than a kilohertz)
seem to be excited. This is rather surprising because the mechanical damping for
such high frequencies was expected to be strong. Such high frequency components
are for example much smaller in the Tesla case [33]. Further measurements and
understandings will tell if such high frequency components are real or are an artifact of
the measurement method. As an example of such an artifact, the initial bump during
the RF cavity field development does not correspond to a real detuning but is probably
due to a strong transient parasitic term as explained in Appendix A.9.1. This bump is
consequently removed from the measured detuning function. The Lorentz detuning
function considered in the following is the remaining “Real” part of the measured
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Figure 2.23: Measured Lorentz detuning function ∆ωL(t), for nom-
inal gradient in SNS medium beta prototype cryomodule (periodic
60 Hz) and corresponding amplitude of the discrete fourier compo-
nents.

signal as illustrated in Fig. 2.23 (the end of the signal corresponding to the end
of the RF pulse decay is also smoothed out). Beside the period of time when the
beam is on, the detuning function to compensate for can be arbitrarily defined. In
the following two different examples will be presented. In the first one, the detuning
compensation function will be chosen null between two RF cycles. In the second
example, only the part corresponding to the RF turn on transient and the beam
pulse duration will be compensated.
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Figure 2.24: Initial measured Lorentz detuning function ∆fL(t)
and its truncation to the 10th harmonic of 60 Hz, ∆fL10

(t). This
truncated function constitutes in the following the function to be
compensated by the piezoelectric.
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I Null detuning between RF cycles

The Lorentz detuning presented in Fig. 2.24 is null between two RF cycles only
because no cavity voltage signal was available during this period of time. Since
the compensation method presented in the following requires a continuous detuning
function to work on, the measured Lorentz detuning function will first be taken as
it is measured, even if the actual unknown detuning within RF cycles is non null.
Because the mechanical parameters for the piezoelectric action on the SNS medium
beta cavity has only been reconstructed up to 600 Hz, only the first 10 harmonics from
the discrete Fourier transform of the Lorentz detuning function will be considered in
the following. The continuous function ∆ωL10

(t) built from these ten components is
then attempted to be compensated by finding an adequate profile of the piezoelectric
input voltage. The function ∆ωL10

(t) is illustrated in Fig. 2.24 and its Fourier
decomposition (amplitudes ∆ωL10,n and phases φL10,n) are presented in Fig. 2.25.
Using the Eq. (2.43) and the mechanical parameters of Table 2.2, the amplitudes
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Figure 2.25: Amplitudes ∆fL10 ,n and phases φL10,n of the first ten
harmonics of the truncated Lorentz detuning function −∆fL10

(t).

VP,n and the phases θP,n for the first ten n harmonics are calculated and displayed in
Fig. 2.26. With these results, the piezoelectric input voltage function VP (t) can be
estimated using Eq. (2.39). This function is illustrated in Fig. 2.27. To check the
result of the method, the calculated piezoelectric input voltage function VP (t) can be
used as the forcing function for the set of the mechanical equations associated to the
piezoelectric action. The developement of the detuning is calculated numerically and
is plotted in Fig. 2.28. The transient behavior of the generated detuning is observable
at the early time and the steady state behavior is found to satisfy the expectations.
To prove this point, the sum ∆ωL10

(t) + ∆ωP (t) is illustrated in Fig. 2.29. As
desired, the compensation is very good and the principle of the compensation scheme
using harmonics of the repetition rate is conclusive. In this example, only frequency
components lower than 600 Hz were compensated, but the calculations can easily be
extended once the mechanical basis, or the transfer function linking the piezoelectric
input voltage to the detuning, is known for higher frequencies.
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Figure 2.26: Amplitudes VP,n and phases θP,n of the first ten har-
monics of the piezoelectric input voltage calculated with Eq. (2.43).
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Figure 2.27: Piezoelectric input voltage function VP (t) (repetitive
at 60Hz) for the compensation of the truncated Lorentz detuning
function ∆ωL10

(t).

II Compensation for RF turn on transient and beam pulse duration

In the previous example, the detuning compensation function was chosen null be-
tween RF cycles. This choice was totally arbitrary and a slightly different approach
will now be presented. The primarly goal of the active compensation using piezoelec-
tric is to reduce as much as possible the dynamic Lorentz detuning within the beam
pulse. A second goal would be to compensate for the detuning also during the RF
turn on transient, for example to facilitate the task of the RF control system. With
such considerations it is possible to focus only on these periods of time and treat the
RF decay and gap between RF cycles as free parameters. The previous example was
straightforward since the function to compensate for was continuously defined from
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Figure 2.28: Transient and steady state of the detuning ∆ωP (t)
generated by the piezoelectric input voltage of Fig. 2.27.
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Figure 2.29: Sum of the truncated Lorentz detuning function
∆ωL10

(t) and of the detuning function generated by the action of
the piezoelectric ∆ωP (t). As expected, this sum is close to zero.

the beginning. Restricting the compensation period to the RF turn on transient and
the the beam on time requires an additional procedure to obtain a continuous detun-
ing function through time. The benefit of the following approach is to simplify the
harmonic content of the detuning compensation function. Doing so allows one to find
a simpler piezoelectric input voltage profile which is of practical interest. Looking
only at the Lorentz detuning function during the RF turn on transient and the beam
on time indicates that a function based on a very few number of harmonics should be
sufficient to approximately fit the Lorentz detuning profile over these periods. Using
a numerical fitting routine, a function based on a single harmonic (180Hz) would for
example be sufficient to approximatly compensate for the Lorentz detuning function.
The fiting of this function and its Fourier components are illustrated in Fig. 2.30
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and Fig. 2.31 (as mentioned, only a single harmonical component is non null). Us-
ing again Eq. (2.43) and the mechanical parameters of Table 2.2, the amplitudes
VP,n and the phases θP,n for the harmonics are calculated and displayed in Fig. 2.32.
The piezoelectric input voltage function VP (t) built from these Fourier components
is illustrated in Fig. 2.33. The detuning (transient and steady state) generated by
this piezoelectric input voltage profile is calculated with a numerical routine and the
results are presented in Fig. 2.34. The sum with the initial fitted function is checked
to be close to zero as illustrated in Fig. 2.35.

The compensation method based on a piezoelectric tuner input voltage composed
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Figure 2.30: Fitting of the detuning function −∆ωL(t) (RF turn
on transient and beam on duration) by projection of only the third
harmonic (180 Hz) of the repetition rate. The fitting function
−∆ωL1h

(t) can be compensated by a piezoelectric input voltage func-
tion VP (t) having the same harmonic.

of the harmonics of the repetition rate was proven to be a possible and attractive
scheme. The compensation of the Lorentz detuning does not require the coupling co-
efficients for the piezoelectric and the Lorentz forces to be equal. The parameters for
the harmonics can be found using the reconstructed mechanical basis or the results of
the transfer function linking the piezoelectric input voltage to the detuning. In this
case only information at the harmonics of the repetition rate are needed. Because the
dynamic Lorentz detuning compensation is only desirable during the beam on time
and RF turn on transient, a piezoelctric tuner input voltage profile containing only
one or a few harmonics of the repetition rate seems possible and of practical interest.
Other methods, using different piezoelectric input voltage profiles, such as trapezoidal
shape waveforms for example, are also possible but are not as straightforward as the
presented method making their optimization more difficult. An advantage of such
waveforms is for example their easy programmability using a common pulse gener-
ator. A potential difficulty for the compensation using piezoelectric tuners is the
possible change of the mechanical spectrum through time (due for example to the
change in position of the mechanical tuner). This is a potential source of concern
because as observed from the measured transfer functions, the mechanical resonances
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Figure 2.31: Fourier components (amplitudes and phases) of the
fiting detuning function −∆ωL1h

(t) (see Fig. 2.30). Since only the
third harmonic of the repetition rate has been chosen for the fitting,
the amplitudes of all the other harmonics are null.
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Figure 2.32: Amplitudes VP,n and phases θP,n of the first ten har-
monics of the piezoelectric input voltage calculated with Eq. (2.43).
Only one harmonic is non null since the function to compensate (see
Fig. 2.30) contains no other harmonics.
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Figure 2.33: Piezoelectric input voltage function VP (t) (repetitive
60Hz) for the compensation of the detuning function of Fig. 2.30.
This function has a much simpler form than the first function dis-
played in Fig. 2.27.
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Figure 2.34: Transient and steady state of the detuning ∆ωP (t)
generated by the piezoelectric input voltage of Fig. 2.33. In the
steady state, the detuning genrated by the piezoelectric is repetitive
at 60 Hz and is opposite of the detuning function to compensate,
∆ωL1h

(t).



2.6 Conclusion 72

1�240 1�120 1�80 1�60
t@sD-4

-2

0

2

4

D
f
L
1
0
+

D
f
p

@HzD,
S
S
T

Figure 2.35: Sum of the detuning function ∆ωL1h
(t) and of the de-

tuning function generated by the action of the piezoelectric ∆ωP (t).
As expected, this sum is close to zero.

can be rather narrow. As a simple solution, it would for example be possible to avoid
using harmonics of the repetition rate too close to a resonance line in the input volt-
age function. Therefore, the practicability, the flexibility and the reliability of the
presented compensation scheme need to be tested. Since identical superconducting
cavities present non negligible differences in their mechanical spectrums, the com-
pensation optimization should be done for each of them. Also, because the cavities
of a single cryomodule are possibly mechanically coupled, the optimization of their
respective piezoelectric waveforms should not be considered as a totally independent
process.

2.6 Conclusion

In this chapter, the issue related to the dynamic Lorentz detuning in SRF cavities
was investigated. The modeling for the calculation of the voltage in a cavity under
detuning was developed and illustrated to strengthen the understanding of the prob-
lem dynamics. Such understanding has for example been beneficial for the extraction
of the cavity mechanical parameters from measurements or for identifying possible
parasitic signals in these measurements. As a secondary benefit, the effort on the
calculations of the voltage lead to interesting insights on the filling of a cavity under
dynamic detuning, and to a simple and useful scaling of the required additional RF
power when the cavities parameters, Q external and detuning, are varied from their
optimum values. It also provided a method to monitor the cavity resonant frequency
when some RF signal is available in the cavity. For the modeling of the detuning,
a qualitative approach representing the cavity wall vibrations as the vibrations on a
string was proposed. This simple analogy is fully compatible with the regular modal
basis representation. It naturally lead to a better understanding of the mechanical
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coupling coefficients. It was made clear that the usually quoted Lorentz detuning
coefficient is in reality the sum of all the coupling coefficients to the different mechan-
ical modes. For this reason it becomes evident that whereas this parameter is the
principal figure of merit in a CW operated cavity, its meaning is not as strong in a
pulsed case. Instead, the position of the mechanical modes frequencies with respect
to the harmonics of the repetition rate, and the values of the modes damping coeffi-
cients, are more relevant. Eventually, the difference between the coupling coefficients
associated with the Lorentz forces and with the piezoelectric tuner was explained. It
was understood that the detuning by the Lorentz forces was a very particular case
where the forcing action and its effect on the variation of the cavity frequency always
combines to produce coupling coefficients of same sign, for all the mechanical modes
of the structure. This result was confirmed by the reconstruction of the mechanical
parameters associated to the Lorentz force action using measured data. The extrac-
tion of the mechanical parameters for both, Lorentz forces action and peizoelectric
tuner action, confirmed the modeling of the system. It also gave the possibility to
have a virtual cavity to carry further studies, for example on the compensation of
the Lorentz detuning by the piezoelectric tuner. In this study, it was shown that
the input voltage waveform using harmonics of the repetition rate was a possible and
straightforward method to control and optimize the compensation. Further studies
using the same modeling frame are possible. For example, a study on the use of a
piezoelectric to compensate for the detuning generated by the microphonics could be
of direct interest for machine operated in CW. Also, a study on the time develop-
ment of the ponderomotive oscillation could be beneficial from the RF control point
of view.
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Chapter 3

Longitudinal beam dynamics in
SRF cavities

A very common practice in linear accelerators (LINAC) is the use of cavities oper-
ating in standing waves (SW) like SRF cavities for example [42]. The calculation of
the longitudinal dynamics for a particle passing through such an accelerating element
is a non-linear coupled problem since the energy gain of a particle depends on the
evolution of its phase relative to the RF oscillating field within the element, but the
phase itself depends on the evolution of the particle’s velocity. In the case of ultrarel-
ativistic particles, the coupling between the evolution of the energy and the evolution
of the phase vanishes because the velocity of the particle remains virtually unchanged
during the acceleration. To the contrary, this coupling is non negligible when the beta
of the particle is changing within the element. When the accelerating cavity is a single
cell with a longitudinal electric field symmetric with respect to the geometrical center
of the cell and when the beta variation is small, one usually applies the thin lense
approximation method [43]. If the element is long, the field non symmetric, and the
beta largely varying, the previous treatment can lead to inacuracies. To circumvent
these limitations, some approximation methods have been developed where the real
non-symmetric field is altered to a symmetric one, where the element is fractioned
into successive gaps and where numerical iterations are usually applied to estimate
some averaged velocity and phase [44]. Instead of trying to fit to the usual set of equa-
tions, it is of interest to try to develop a more general method. This method should
pursue three prerequisites: Accuracy, flexibility, and fast computation. A method
based on the solution to the non-linear coupled problem by successive analytical it-
erations has been developed and meets these three prerequisites. As an introduction,
the results for the thin lense method based on a linear phase law approximation will
be presented. This method will be described for a symmetric field and extended to
a non-symmetric one. It will then be used to explain and illustrate some issues per-
taining to multicell cavities, field asymetry/tilt, large transit time and longitudinal
emittance preservation. The method based on analytical iterations, corresponding
to non-linear phase law cases, will then be exposed and discussed. It will be shown
for example that the linear phase law approximation corresponds to the results after
the second iteration and that the concepts of transit time and average phase can be
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adapted to the new method. Finally, using the generality of the analytical results, a
powerful semi-analytical method will be derived.

3.1 Longitudinal dynamics with linear phase law

approximation

The approximation of a linear phase law leads to simple formulation for the energy
gain and for the phase of flight (equivalent to the time of flight expressed in the phase
unit of the oscillating RF). Its direct applicability is usually limited to symmetric fields
and cases where the beta of the particle is not largely varying. It will nevertheless
be shown that it can be extended to non-symmetric fields with minor alterations and
will then be used as a first simple method to understand some issues pertaining to
the transit time factor, multigap elements, non-symmetric fields, and longitudinal
emittance conservation.

3.1.1 Transit time factor and average phase

Assuming an accelerating cavity of resonance frequency ω, where the on-axis lon-
gitudinal electric field is Ez(z, t) = Ez(z) cosωt, and with its starting longitudinal
position zs and ending position ze, the energy gain and the phase with respect to the
RF oscillating field can be expressed along the longitudinal location z, by the system
of coupled integral equations

∆W (z) =q

∫ z

zs

Ez(s) cosφ(s) ds

φ(z) =φzs +

∫ z

zs

k(s) ds

(3.1)

where φ(zs) = φzs is the entrance phase of the particle with respect to the field, and
where k(s) depends on the energy of the particle as

k(s) =
ω

c

1

β(s)
=
ω

c

1
√

1 − γ−2(s)
=
ω

c

1
√

1 −
[

W0

W (s)

]2
(3.2)

with c the speed of light, β the ratio of the particle’s velocity and c, W0 the rest mass
energy of the particle and W its total energy. Since the time of flight corresponds to
the time taken by a particle to pass from one longitudinal location to an other one, it is
convenient to define a corresponding phase of flight measuring this time in comparison
to the RF oscillating frequency. The phase of flight is given by ∆φ(z) = φ(z) − φzs.
The energy gain and the phase of flight at the end of the cavity are ∆W (ze) and
∆φ(ze). Approximating the phase law as linear in the calculation of the energy gain,
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Eq. (3.1) simplifies to

∆W (z) =q

∫ z

zs

Ez(s) cos(φzs + kzs{s− zs}) ds

φ(z) =φzs + kzs{z − zs} +

∫ z

zs

∆k(s) ds

(3.3)

where ∆k(z) = k(z)−kzs , with the notation kzs = k(zs) (the index zs will be used for
other variables to refer to their values at the entrance of the accelerating gap). This
system can be solved by calculating the energy gain function and injecting the result
in the phase equation. An elegant manner to solve the integral for the energy gain is
to develope the cosine function to separate spatial dependency and phase dependency.
This is the essence of the transit time concept first introduced by Panofsky

∆W (z) = qE0L{Tzs(kzs) cosφzs − Szs(kzs) sinφzs} (3.4)

Here L is the length considered, E0 is the average electric field, Tzs(kzs) and Szs(kzs)
are respectively the cosine and sine transform of the field with zs taken as reference.
The definitions of these parameters are

L =ze − zs

E0 =
1

L

∫ ze

zs

|Ez(s)| ds

Tzs(kzs) =
1

E0L

∫ ze

zs

Ez(s) cos(kzs{s− zs}) ds

Szs(kzs) =
1

E0L

∫ ze

zs

Ez(s) sin(kzs{s− zs}) ds

(3.5)

Instead of using the physical entrance phase φzs it is possible to use an “average”
phase Φ and simplify furthermore the form of Eq. (3.4). It writes

∆W (ze) = qE0LT zs(kzs) cosΦ (3.6)

with

T zs(kzs) =
√

T 2
zs(kzs) + S2

zs(kzs)

Φ =φzs + arctan
Szs(kzs)

Tzs(kzs)

(3.7)

For a positively charged particle, the energy gain is maximum when Φ = 0, so when
φzs = − arctan Szs(kzs)

Tzs(kzs)
. For a negatively charged particle the maximum energy gain

is obtainable by a simple π shift of this entrance phase. For simplicity, the following
illustrations and discussions will be applied to positively charged particles. The phase
Φ is usually refered to as average phase, RF phase, or synchronous phase. In the
previous expressions, the phase of flight and consequently all the other results were
expressed with respect to the entrance location zs. This is a natural choice but not
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a unique one. Since the phase law for the energy gain calculation in Eq. (3.3) is
linear, it can be rewritten with respect to any longitudinal location zr as φ(z) =
φ(zr)+kzs{z− zr}. Using this relation and taking zr as longitudinal reference for the
functions T and S leads to

Tzr(kzs) =
1

E0L

∫ ze

zs

Ez(s) cos(kzs{s− zr}) ds

Szr(kzs) =
1

E0L

∫ ze

zs

Ez(s) sin(kzs{s− zr}) ds

∆W (ze) =qE0L{Tzr(kzs) cosφzr − Szr(kzs) sinφzr}
=qE0LT zr(kzs) cos Φ

T zr(kzs) =
√

T 2
zr(kzs) + S2

zr(kzs)

Φ =φzr + arctan
Szr(kzs)

Tzr(kzs)

(3.8)

The functions Tzr and Szr are linked to the previous functions Tzs and Szs as

Tzr(k) = Tzs(k) cos(k{zs − zr}) − Szs(k) sin(k{zs − zr})
Szr(k) = Szs(k) cos(k{zs − zr}) + Tzs(k) sin(k{zs − zr})

(3.9)

With this result it can be simply demonstrated that T zr(kzs) = T zs(kzs) and conclude
that the maximum energy gain is independent of the longitudinal reference used in the
definitions. In Fig. 3.1, the functions T and S are plotted as a function of the particle’s
entrance velocity and for two longitudinal references. These functions are different
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Figure 3.1: T , S, and T versus βzs for a single accelerating gap
having a symmetric field profile, and for two different longitudinal
references, zs and zr = zs + 4L

3
.

for each longitudinal reference but the associated functions T are identical. Because
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the phase law is linear it is possible to estimate the phase at the reference location
that corresponds to the maximum energy gain by using the result of Eq. (3.7), φzr =

φzs + kzs{zr − zs} = − arctan Szs(kzs)
Tzs(kzs)

+ kzs{zr − zs}. For some particular longitudinal

locations zec, the function Szec becomes null. Using Eq. (3.8) it follows that the
physical phase of flight and the average phase at the location zec are equivalent,
φzec = Φ. These points are called electrical centers and their locations usually depend
on the particle’s entrance velocity. As it is shown in Section B.1, for a gap having
a symmetric electric field profile with respect to its middle, the geometrical center
zgc = zs+ze

2
= zs + L

2
is always an electrical center. For this particular case, the

accelerating element can efficiently be decomposed in a succession of three simple
equivalent elements, a drift space, an infinitely small gap, and a second drift space
(this succession of element can be referred to as d-g-d). It will be shown that, if
the gap has a non-symmetric field profile with respect to its geometrical middle, the
element can still be treated with a d-g-d method, and that the final set of equations
for the energy gain and for the phase kick is only slightly different than for the usual
symmetric field case.

3.1.2 Drift-gap-drift representation for non-symmetric fields

If the field does not have any particular symmetry, the set of Eq. (B.10) does not
apply, nevertheless the d-g-d method presented for symmetric field cases in Annex
B.1 can be extended. The development in Annex B.1 was based on a representation
of the accelerating element by a succession of a drift space, an infinitesimal gap, and a
second drift space, where the location of the gap was exactly at the geometrical center
of the element. This particular location is a consequence of the symmetry of the field
with respect to the geometrical center and of the linear phase law approximation.
When the field does not have such symmetry, the electrical center should be the
location where some kicks in energy and phase are applied. If the linear phase law
approximation is kept for the calculation of the energy gain, the result of Eq. (3.8)
is still valid. However, the result of Eq. (B.5) is changed due to the fact that the
function Sugc is not null for a non-symmetric field. This equation can be rewritten in
this case as

∆φNL(ze) = dγk|zs
{

L

2
∆γ(ze) −

q

W0

E0L{ T ′
ugc(kzs) sin(φzs + kzs

L

2
)

+ S ′
ugc(kzs) cos(φzs + kzs

L

2
)}

} (3.10)

Since the geometrical center is not the electrical center, the phase φzs + kzs
L
2

is not
equal to the average phase. Using the linear phase law it is possible to write φzs +
kzs

L
2

= Φ − kzs{zec − zs} + kzs
L
2
. Writing zec = zgc + uec = zs + L

2
+ uec eventually

gives φzs + kzs
L
2

= Φ − kzsuec = Φ − ∆φuec. The parameter uec corresponds to the
longitudinal shift of the electrical center with respect to the geometrical center of the
element zgc. The parameter ∆φuec measures this shift in terms of phase difference.
For a symmetric field, uec and ∆φuec are null. If the drift-gap-drift is applied with
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the gap kicks done at the electrical center location zec, the Eq. (B.8) is replaced by

φ(ze) = φzs + ∆φdrift1 + ∆φgap + ∆φdrift2

= φzs + kzs{zec − zs} + ∆φgap +
{

kzs + dγk|zs∆γ(ze)
}

{ze − zec}

= φzs + kzs{
L

2
+ uec} + ∆φgap +

{

kzs + dγk|zs∆γ(ze)
}

{L
2
− uec}

= φzs + kzsL + ∆φgap + dγk|zs∆γ(ze)
L

2
− dγk|zs∆γ(ze)uec

which, after substracting the linear part φzs + kzsL, gives:

∆φNL(ze) = ∆φgap + dγk|zs∆γ(ze)
L

2
− dγk|zs∆γ(ze)uec (3.11)

This result must be equivalent to the result of Eq. (3.10) so

∆φgap =dγk|zs
{

−qE0L

W0
{T ′

ugc(kzs) sin(Φ − ∆φuec) + S ′
ugc(kzs) cos(Φ − ∆φuec)} + ∆γ(ze)uec

}

(3.12)

Using the result of Eq. (3.9) for zr = zec allows to find ∆φuec = arctan(
Sugc(kzs )

Tugc(kzs )
).

Writing

ΘT,S = ∆φuec = arctan(
Sugc(kzs)

Tugc(kzs)
)

ΘT ′,S′ = arctan(
S ′
ugc(kzs)

T ′
ugc(kzs)

)

T ′ =
√

T ′2
ugc + S ′2

ugc

(3.13)

leads for the energy and phase kicks in the gap to

∆Wgap = qE0LT cos Φ

∆φgap =
1

β2
zsγ

3
zs

{

−∆γ(ze)ΘT,S +
qkzsE0L

W0
T ′ sin(Φ − ΘT,S + ΘT ′,S′)

}

(3.14)

where T , T ′ , ΘT,S , and ΘT ′,S′ depend on kzs. The kicks in energy and phase of
Eq. (3.14) must be applied at the electrical center. Since its location depends on
the particle’s entrance velocity, it would be unpractical to carry the calculations for a
bunch of particles. For convenience, it is possible to fix a common location where the
kicks have to be applied for all the particles. An interesting choice is the geometrical
center of the gap. Since uec represents the difference between the electrical center
position and the geometrical center position, the phase kick has to be incremented
by −dγk|zs∆γ(ze)uec = ∆γ(ze)

β2
zsγ

3
zs

ΘT,S. Eq. (3.14) is consequently modified to

∆Wgap = qE0LT cos Φ

∆φgap =
qkzsE0L

β2
zsγ

3
zsW0

T ′ sin(Φ − ΘT,S + ΘT ′,S′)
(3.15)
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Figure 3.2: Energy gain and phase of flight for a single gap with
non-symmetric field. The drift-gap-drift approximation is drawn in
dashed line and the continuous functions are plotted in solid lines.

The drift-gap-drift representation for a non-symmetric field is illustrated in Fig. 3.2.

If the field is symmetric with respect to the geometric center, ΘT,S = ΘT ′,S′ = 0 or
π and the result of Eq. (B.10) is retrieved. It should be recalled that the assumptions
leading to Eq. (3.15) are a linear phase law approximation for the calculation of the
energy gain and a first order truncation in the expansion of the particle’s wave vector
k as a function of the variation of its energy ∆W . It should also be mentioned that,
even if the transformation using Eq. (3.15) has to be made at the geometrical center
of the gap for all the particles, the average phase for each particle is still equal to the
phase at its corresponding electrical center location, which depends on the particle’s
entrance velocity. As a consequence, the average phase of a particle depends on both
its entrance phase and its entrance velocity. Of course, if the dispersion of entrance
velocities in a bunch of particles is small enough, the variation of the electrical center
position has a negligible impact. In Annex B.1.1, the general treatment of a bunch
of particles using a reference particle is presented in the most general case. Since in
the d-g-d method the energy gain can be considered quasi-adaibatic, the Liouville’s
theorem should be satisfied at least to the first order of the ratio energy gain over
entrance energy, and it follows that the area in the longitudinal phase space should be
conserved. It is known that the d-g-d representation for an element with symmetric
field satisfies this expectation [43]. The verification in the case of a non symmetric
element is developed in Annex B.1.2. The result of Eq. (3.15) is applicable to any
type of field profile, can be applied to a bunch of particles, and satifies Liouville’s
theorem. In the following, the d-g-d treatment is also implemented in cases where
the non linear part of the phase law is not negligible.
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3.1.3 Fractioning of an accelerating element

It was shown that the thin lense method can succefully be applied for any type of
accelerating element (single gap or multigap, symmetric or non symmetric field), if
the phase of flight of the particle within the entire element can be considered close
to linear. For elements with large transit time and/or non negligible variation of the
particle’s relativistic beta, as for a multicell superconducting cavities for example,
the accuracy of the thin lense method should be questioned. Instead of passing
such an element at once it is possible to fraction it in a series of consecutive smaller
elements and to apply the previous d-g-d method for each of them. The passage from
a unique element to a succession of smaller pieces does not pose any difficulty if the
entrance parameters βzs and φzs are known, because the entrance conditions for every
successive elements can then be calculated. Unfortunately, the usual intent is to use
an average phase for the entire element and such operation can be fairly complex in
practice due to the fact that the average phases of the consecutive elements are not
independent from one an other and that the locations of their electric centers, and
most of the parameters of Eq. (3.14), depend on the entrance velocity of the particle
which varies for each consecutive element. To better understand the fractionning
process, an example of multicell cavity where the phase law over the entire element is
close to linear is first presented. Then, an example where the non-linear part of the
phase of law is non negligible is considered and inherent limitations of the thin lense
method are emphasized.

I Energy gain in fractionned multicell cavity with linear phase law

As a first example, a cavity of length L, axial electric field gradient E0, and transit
time factor T , and composed of N cells is considered. Noting for the parameters
of the nth cell, Ln, En, T n, and writing Φn the average phase experienced by the

particle, gives for the energy gain ∆W = q
N
∑

n=1

EnLnT n cos Φn. Even if the velocity of

the particle is considered constant along the entire element, the average phases Φn

are still depending on each other but the relation between them can be explcitely
stated. The cells can oscillate with different phase (π mode case for example) and
the particle needs a finite time of flight to pass from the electrical center of a cell to
the next. This time of flight depends on the relative position of the electrical centers
and on the particle’s entrance velocity. Writing the average phase of the cells with
respect to the average phase of the first one Φn = Φ1 + ∆Φn, where ∆Φ takes into
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account the two previous effects, allows to write for the energy gain

∆W =q
N

∑

n=1

EnLnT n cos(Φ1 + ∆Φn) = qE0LT cav cos Φcav

tan ∆Φtot =

N
∑

n=1

EnLnT n sin ∆Φn

N
∑

n=1

EnLnT n cos ∆Φn

=
b

a

T cav =

√
a2 + b2

E0L
; Φcav = Φ1 + ∆Φtot

(3.16)

Since the phase of flight has been considered strictly linear, it is understandable that
the form of the energy gain for the element treated as a succession of N gaps is fully
compatible with the expression of the energy gain for a single gap. The previous
result can first be applied to a case where all the gaps are identical and are operating
in π mode. In such a case En = E0, Ln = L

N
, and the transit time is the same for

all the cells and can be noted T cell. Also, the average phase difference from a cell to
the next is constant and can be written ∆Φcell. It follows that ∆Φn = (n− 1)∆Φcell.
When the time of flight of the particle to pass from one electrical center to the other
is equal to π, which is equivalent to say that the beta of the particle is equal to the
geometrical beta of the cells, ∆Φcell is equal to 2π and the average phase Φn is the
same for all the cells. Using Eq. (3.16) in this particular case gives T cav = T cell and
Φcav = Φ1. This synchronicity between consecutive cells corresponds to the optimum
case. Taking more or less than π for the particle to pass from an electrical center to
the next leads to a deterioration of the global accelerating efficiency of the cavity. As
a direct consequence, the transit time factor for a cavity composed of identical cells
is always lower than the one for the single-cell case, for any entrance beta. This can
be proven by using Eq. (3.16)

T cav =T cell

√

{

N−1
∑

n=0

cos n∆Φcell

}2
+

{

N−1
∑

n=0

sin n∆Φcell

}2

N
≤ T cell

This property is illustrated in Fig. 3.3. In this figure, the transit time T cav is cal-
culated for cavities with different number of identical cells. The cells used in the
example have a geometrical beta equal to 0.61 and a sinusoidal field profile. As ex-
pected the transit time corresponding to the single cell case is larger than for the
multicell cases. For the single-cell case, the maximum of the transit time function
occurs for betazs = 1. As the number of cells is increased the synchronicity between
cells become the preponderant factor and the location of the maximum of the transit
time factor moves toward the geometrical beta of the cells.

II Energy gain in fractionned multicell cavity with non-linear phase law

The result of Eq. (3.14) can be used when the phase of flight is close to a linear
phase law. If the non linear component of the phase of flight is non negligible the
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Figure 3.3: Transit time factor as a function of the particle’s en-
trance beta for single-cell and multi-cell cavities (with identical cells
of geometrical beta βzs = 0.61 and sinusoidal field profile). As the
number of cells increases, the maximum of the acceleration progres-
sively passes from βzs = 1 to βzs = 0.61.

method of fractioning the element into sub-element is possible. It was mentioned
that since the velocity and the entrance phase for the consecutive gaps depend on
one an other, establishing a global average phase for the entire element is not trivial.
Looking deeper into such considerations reveals that the thin lense approximation
method is not self-consistent because the initial linear phase law approximation used
in the calculations leads to a non-linear phase law as result. In other words, the
results for an accelerating element passed at once or fractioned into pieces are not
equivalent since for the second one the phase law is linear for each consecutive gap
but not for the overall element. As a direct consequence, the definition itself of an
overall average phase for a fractioned element has to be clarified. A simple choice is to
define that a null average phase for the entire element corresponds to the maximum
energy gain. This is consistent with the average phase definition introduced in the
thin lense approximation method. As an illustration, an element consituted of six
identical and symmetric gaps is considered. The evolution of the energy gain and
of the phase of flight are estimated for the cavity passed in a single step and in six
steps with each step corresponding to a gap. A numerical iteration process is applied
to set the average phase for the fractioned case. Fig. 3.4 reveals inaccuracies in the
energy gain and phase of flight obtained from single step calculations, originating
from the fact that the linear phase law assumed for the entire element is not precise
enough. Fractioning the element into six consecutive steps allow a gain in accuracy
but requires the introduction of numerical processes. The energy gain as a function
of the average phase for the single step and fractioned element is illustrated in Fig.
3.5. It appears that, if the non-linear component of the phase law is not negligible,
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Figure 3.4: Energy gain and non linear phase of flight as a function
of the longitudinal position for a H− particle with βzs = 0.4 passing
through a 6-cell element of geometrical beta equal to 0.45 and of
accelerating gradient E0 = 25 MV/m. The element is passed at
once or fractioned in six consecutive gaps corresponding to the six
cells.

the energy gain function seems not to be a simple cosine function of an average phase
as written in Eq. (3.15). It will be shown in the Section 3.2.2 that the energy gain
and the phase of flight functions can be described, in the general case, with a sum of
cosine functions of the entrance phase and its harmonics.
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Figure 3.5: Energy gain at the end of the element as a function
of the average phase of the single step calculation process. When
the non-linear component of the phase of flight is non negligible, the
energy gain is not a simple cosine function.
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3.2 Longitudinal dynamics with non-linear phase

law

3.2.1 Initial considerations

So far, the basic assumption for the calculations of the energy gain and of the phase
of flight has been the linearity of the phase law. With such a simplified approach,
the initial coupling of Eq. (3.1) between the energy gain and the phase of flight is
broken and the thin lense method can be deduced. This is a simple method for the
estimation of the energy gain and phase of flight, awhich helps also to understand
some issues such as asymmetric field, multicell element, field tilt, and is proven to
satisfy Liouville’s theorem up to the second order. When the non linear part of the
phase of flight is non negligible, the method can lead to some inaccuracies and it was
found that the simple cosine dependence of the energy gain function with respect
to the entrance phase or average phase was not satisfying. Even if a more precise
formulation of the energy gain and phase of flight is not an easy matter, it is possible
by simply applying a Fourier expansion to proove that these functions will depend in
general on all the other harmonics of the entrance phase. The expansion of a function

f(x) with a period 2L can be written f(x) = a0
2

+
∞
∑

n=1

{an cos nπx
L

+bn sin nπx
L
} where an

and bn are the Fourier coefficients of the function f . Applying this expansion to the
energy gain and the phase of flight, periodic with respect to the variable φzs allows
to write

∆W =
∞

∑

n=0

∆WCn cosnφzs + ∆WSn sinnφzs

∆φ =

∞
∑

n=0

∆φCn cos nφzs + ∆φSn sin nφzs

(3.17)

where the indexes Cn and Sn refer to coefficients of functions of the type cosnφ and
sinnφ respectively. The coefficients ∆WCn , ∆WSn , ∆φCn , ∆φSn are functions
of the entrance energy and of the field properties but not of the entrance phase. It
appears that the thin lense approximation is an estimation of Eq. (3.17) up to the
order n = 1. In the following, a method based on analytical iterations will be used to
solve the initial coupled problem of Eq. (3.1) and higher order terms will be found
explicitely.

3.2.2 Solution by analytical iterations

To solve the coupled initial system of Eq. (3.3), the assumption of a linear phase
law was made. To go beyond such assumption means introducing some non linearity
for the phase law in the calculations. Considering the initial system of Eq. (3.3)
and writing the phase of flight as a sum of the linear part and the non linear part,
φ(z) = φL(z)+∆φNL(z) , with φL(z) = φzs+kzs(z−zs) , allows to rewrite the system
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as

∆W (z) =q

∫ z

zs

Ez(s) cos(φL(s) + ∆φNL(s)) ds

∆φNL(s) =

∫ z

zs

∆k(s) ds

(3.18)

The equations are coupled and can be solved by analytical iterations. A possible
starting point is to consider the cavity as a single drift space where the particle does
not experience any acceleration. It is possible to note this trivial initial function
∆W0(z) = 0 and use it in the phase of flight equation, which gives ∆ΦNL(z)0 = 0 as
a result. The basic idea is to reenter the result of the phase in the energy equation
and to progress by successive iteration as displayed in Fig. 3.6. Thus one expects to
obtain energy gain and phase of flight functions that converge toward the solution of
the initial system. The integral for the energy gain in Eq. (3.18) is not solvable when

Figure 3.6: The system of coupled equations for the longitudinal
dynamics can be approached by an analytical iteration method. As
a starting function the gap is considered as a simple drift space

∆φNL is not of a particular form, therefore cosine function is developed into a Taylor
series. The function to integrate for the phase of flight is the variation of the wave
number, not the energy gain and this leads to expand also ∆k into a Taylor series
with respect to ∆W . The system for the ith iteration can be rewritten

∆Wi(z) =
∞

∑

n=0

{ q

n!

∫ z

zs

Ez(s) d
n
θ cos θ|φL(s) ∆φni−1(s) ds

}

∆φi(z) =

∞
∑

n=1

{dnWk|W (zs)

n!

∫ z

zs

∆W n
i (s) ds

}

(3.19)

To proceed through the iterations some truncations in the series have to be made.
The details of the calculations up to three iterations are presented in Appendix B.
Using the finding of section 3.2.1, it is of interest to always separate the depedence
on the entrance phase from the dependences upon the particle’s energy and upon
the field characteristics. The solutions written ∆W2 and ∆φ2 obtained after three
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iterations can be written under the form

∆W2(βzs, φzs, z, Ez) = ∆W2,C0
+ ∆W2,C1

cosφzs + ∆W2,S1
sinφzs

+ ∆W2,C2
cos 2φzs + ∆W2,S2

sin 2φzs
+ ∆W2,C3

cos 3φzs + ∆W2,S3
sin 3φzs

∆φ2(βzs, φzs, z, Ez) = ∆φ2,C0
+ ∆φ2,C1

cosφzs + ∆φ2,S1
sin φzs

+ ∆φ2,C2
cos 2φzs + ∆φ2,S2

sin 2φzs
+ ∆φ2,C3

cos 3φzs + ∆φ2,S3
sin 3φzs

(3.20)

where all the ∆W2,C0
, ∆W2,C1

, ∆W2,S1
... are functions of all the variables but

the entrance phase. The result of Eq. (3.20) is compatible with the expectations of
Section 3.2.1. It is worthwhile to normalize the field profile function by the acceler-
ating voltage E0L and write such a function kE(z) = Ez(z)

E0L
(since the function has

the inverse dimension of a length, it is written kE as for a wave number). It is then
possible to introduce the dimensionless factor ε = qE0L

W0
and write from the results of

Appendix B

∆W2,C0

W0

= a0,2 ε
2 ;

∆W2,C1

W0

= a1,1 ε
1 + a1,3 ε

3 ;
∆W2,S1

W0

= b1,1 ε
1 + b1,3 ε

3

∆W2,C2

W0

= a2,2 ε
2 ;

∆W2,S2

W0

= b2,2 ε
2

∆W2,C3

W0
= a3,3 ε

3 ;
∆W2,S3

W0
= b3,3 ε

3

∆φ2,C0
= c0,0 ε

0 + c0,2 ε
2 ;

∆φ2,C1
= c1,1 ε

1 + c1,3 ε
3 ; ∆φ2,S1

= d1,1 ε
1 + d1,3 ε

3

∆φ2,C2
= c2,2 ε

2 ; ∆φ2,S2
= d2,2 ε

2

∆φ2,C3
= c3,3 ε

3 ; ∆φ2,S3
= d3,3 ε

3

(3.21)

where the dimensionless functions ai,j , bi,j , ci,j , di,j are only functions of the particle’s
entrance velocity βzs, of the longitudinal position z, and of the normalized field profile
kE. The indexes i and j are used to recall that ai,j, ci,j and bi,j, di,j are coefficients
of cos iφzs and sin iφzs respectively, and of εj. These functions are somehow the
generalization of the transit time factor concept in the case of a non linear phase
law. The function c0,0 = kzs{z − zs} is the linear part of the phase of flight. To
illustrate the results of Eq. (3.20), the same example as in Section 3.1.3 is considered.
In Fig. 3.8, the functions a, b, c, and d are plotted with respect to the entrance
beta of the particle. Beside the functions a1,1, b1,1, and c0,0, all the other functions
decay to zero as the entrance beta approaches one. This is due to the fact that for
ultrarelativistic particles the non linear part of the phase of flight is usually totally
negligible. Because the geometrical beta of the cells of the cavity in this example is
equal to 0.5, all the functions are taking their largest values when the entrance beta is
close to 0.5. The dependence of the energy gain and of the non linear phase of flight
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on the longitudinal position in the cavity are illustrated in Fig. 3.9. It is observable
that as long as the non linear component of the phase of flight remains small, the
higher order components of the energy gain function are small. The dependence of
the energy gain and of the non linear phase of flight on the entrance phase is pictured
in Fig. 3.10. In this figure, the zero order harmonic and the second order harmonic
are plotted together.
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Figure 3.7: Functions a1,1, b1,1 and a0,2, a2,2, b2,2, as a function of
the entrance beta βzs for a 6-cell superconducting cavity.
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Figure 3.8: Functions c1,1, d1,1 and c0,2, c2,2, d2,2, as a function of
the entrance beta βzs for a 6-cell superconducting cavity.

The energy gain and the phase of flight in Eq. (3.20) are expressed as a function
of the entrance phase. It was pointed out in Section 3.1 that it is a common practice
to use an average phase. In Section 3.1.3, it was suggested to define the average phase
as null when the energy gain is maximum. This definition can be used in the case of
a non linear phase law by finding the value of the entrance phase that maximizes the
energy gain. In the linear phase law case this matter was easily solved whereas in the



3.2 Longitudinal dynamics with non-linear phase law 89

0 0.15 0.3 0.45 0.6

z@mD0

0.002

0.004

0.006

0.008

D
W

�W 0

0 0.15 0.3 0.45 0.6

z@mD

0.1

0

-0.1

-0.2

-0.3

-0.4

D
Φ

@rad
D

Figure 3.9: Energy gain and non linear phase of flight as a function
of the longitudinal position , obtained with the analytical iterative
method for a 6-cell superconducting cavity.
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Figure 3.10: Energy gain and non linear phase of flight at the end
of a 6-cell superconducting cavity as a function of the entrance phase
φzs, obtained with the analytical iterative method.

non linear phase law case this process is more complicated unless numerical means
are used. If the non linearity of the phase of flight is not too large, the problem can
be approached by expansion since the entrance phase to be found should be close
to the one corresponding to the linear phase law case. First, the energy gain of Eq.
(3.20) is rewritten

∆W2

W0
= A0 + A1 cos(φzs + φ1) + A2 cos(2φzs + φ2) + A3 cos(3φzs + φ3) (3.22)

where Ai =

√

∆W 2
2,Ci

+∆W 2
2,Si

W0
and tanφi =

∆W2,Si

∆W2,Ci
. In the previous equation, the

entrance phase can be replaced by the average phase Φ = φzs + φ1 + ∆Φ. The
parameter ∆Φ represents the difference in the entrance phase that maximizes the
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energy gain between the linear phase law case and the non linear phase law case. By
definition, the maximum of the energy gain function must occurs at Φ = 0, which
implies that the first derivative of this function at this value must vanish. Since it
is assumed that ∆Φ is a small phase difference, the term proportional to A3 can be
neglected and the first derivative can be treated by expansion. Limiting this expansion
to the second order gives an equation of the second power in ∆Φ

H∆Φ2 + I∆Φ − H

2
= 0

∆Φ =
1

2H

{

−I +
√
I2 + 2H2

}

(3.23)

with H = 4A2 sin(φ2 − 2φ1) and I = A1 + 4A2 cos(φ2 − 2φ1). This result is applied
to the previous example and illustrated in Fig. 3.11. The few spikes in Fig. 3.11
correspond to the regions where the first order term A1 is close to zero. It is worthwhile
to recall that ∆Φ depends on the cavity accelerating voltage E0L. For example, when
the field amplitude is very small, the non linear part of the phase law is negligible
and the parameter ∆Φ will simply converge to zero.
An analytical approach to the longitudinal dynamics showed that when the phase
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Figure 3.11: ∆Φ as a function of the entrance beta. ∆Φ depends
also on E0L and converges to zero when the non linear part of the
phase law is negligible.

law can not be approximated to linear, the energy gain and the phase of flight can
not be expressed as a simple cosine function of the entrance phase or of the average
phase, but as a sum of all its harmonics (Eq. (3.20) shows such dependencies up
to the third harmonic). As a generalization of the transit time factor concept, the
coefficients of each harmonic depend primarly on the entrance beta of the particle.
These coefficients were calculated up to the third harmonic of the entrance phase
using an analytical iterative method. Furthermore, these coefficients were written
under the form of polynomes of the dimensionless parameter ε (defined in Annex B,
which contains the dependence on the charge and the rest mass energy of the particle,
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and on the amplitude of the cavity accelerating voltage. Such a formulation allows
efficient computation since the calculated coefficients depend only on the entrance
beta of the particle and on the normalized longitudinal field profile. The passage
from the entrance phase to an average phase was also approached analytically, which
ensures an easy treatment for a bunch of particles. The analytical formulation up to
the third harmonic insures fast and accurate calculations if the value of the non linear
part of the phase law is not too large. The domain of validity of the formulation can
be estimated by saying that in Annex B, the cosine functions are expanded up to the
second order of the non linear part of the phase of flight which introduces errors in
the order of twenty percent if the non linear part of the phase of flight is about fourty
degrees. Because the cosine functions have to be integrated it leads to overall errors
roughly half of the previous value. Thus, the corrective terms are expected to be have
approximately ten percents error for a non linear phase of fourty degrees. Pursuing
the analytical iteration process and calculating the coefficients for higher harmonics
of the entrance phase is possible but requires intensive work. Instead of performing all
the calculations analytically it will be shown in the next section that the form of the
obtained results suggests a more general form valid for any order of the iteration. As a
consequence, the very non linear cases can efficiently be approached semi-analytically.
The coefficients depending on the entrance beta of the particle and on the field profile
can be determined numerically and used in the analytical formulation to obtain the
energy gain and the phase of flight for any case.

3.2.3 Semi-analytical method

The results from the analytical iterative method written in Eq. (3.20) and Eq. (3.23)
have a rather particular form. It appears that the results could be written in the
most general case as

∆W =

∞
∑

n=0

∆WCn cosnφzs + ∆WSn sin nφzs

∆φ =

∞
∑

n=0

∆φCn cosnφzs + ∆φSn sin nφzs

∆WCn =
∞

∑

m=n

an,mε
m ; ∆WSn =

∞
∑

m=n

bn,mε
m

∆φCn =
∞

∑

m=n

cn,mε
m ; ∆φSn =

∞
∑

m=n

dn,mε
m

{

a, b, c, dm,n = 0 for m+n=odd

a, b, c, dm,n = f(βzs, k1, z) for m+n=even

(3.24)

The proof that such form is a solution of the initial system of Eq. (3.1) is developed in
Appendix B. The benefit of such a formulation is that the dependencies on the various
variables are explicitely seperated. The remaining unknown coefficients a, b, c, dm,n
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are functions of the entrance beta of the particle and of the field profile. Analytical
expressions for these coefficients up to the third harmonic have been calculated and
can be directly used if the non linear component of the phase law remains below
fourty degrees. For cases beyond such a limit, it is possible to carry the analytical
iterative process further but this is a heavy task. An other approach is to take
benefit of the generality of the formulation of Eq. (3.24) and deduce the values of the
a, b, c, d coefficents by numerical means. The introduction of numerical processes is
not penalizing since the coefficients are functions of the normalized field profile, which
is a given characteristic of the accelerating element, and of the entrance velocity of
the particle, allowing therefore their tabulations once and for all. It is interesting to
remark that such tabulations are also used for the transit time factors T and S in the
d-g-d method. After these coefficients are determined, the computation of the energy
gain and of the phase of flight for any particle (charge, rest mass energy), any entrance
phase, and any amplitude of the accelerating field, is fast and simple thanks to the
analytic formulation of Eq. (3.24). The numerical method to obtain the coefficients
in the following is based on a simple and direct numerical integration of the the initial
system of equations. Of course, faster processes based for example on fractioning of
the element and use of the d-g-d method for the consecutive pieces could efficiently be
used as shown in Section 3.1.3. Having a numerical routine that calculates the energy
gain and the phase of flight for any input condition allows to estimate the coefficients.
A possible process for the extraction of the parameters a, b, c, d is shown below. This
method is then applied to a couple of cases and the accuracy of the results is shown
to be satisfying compared to the results from a purely numerical routine.

I Procedure to determine the a, b, c, d parameters

The following process is focusing on the extraction of the parameters a, b, c, dm,n of
Eq. (3.24) for a given field profile (but free amplitude), given longitudinal position
in the cavity (typically the end position ze of the element), and given entrance beta
of the particle (the process can be automized to obtain tables of the coefficients for a
desired range of βzs).
Inspired by the general form of the solution of Eq. (3.24), the parameters can be
determined in two successive steps. The first is to use the entrance phase as a varying
parameter to determine the coefficients

∆WCn

W0
,

∆WSn

W0
, ∆φCn , and ∆φSn, since these

coefficients do not depend on φzs. It is possible to calculate the energy gain and the
phase of flight with a purely numerical routine for a given ε and different values of
φzs, then perform a discrete Fourier transform on both series of results. The complex
numbers for each harmonic of the Fourier transforms are the desired coefficients (the
real parts are the coefficients of the cosines, and the imaginary are the coefficients
for the sines). This process can then be repeated for various value of ε. Since each
harmonic coefficient is a polynome of ε, as written in Eq. (3.24), a fitting routine
allows to find the coefficients a, b, c, dm,n of these polynomes. The number of entrance
phases in the first step and the number of ε in the second, determine the order up
to where the coefficients a, b, c, dm,n will be determined. From the analytical iterative
method, it appears that considering equal values for the highest harmonic and the
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highest power term of the polynomes makes the most sense. Therefore, if a calculus
up to the order N is desired, the coefficients a, b, c, dm,n should be searched such that
m ≤ N and n ≤ N .

II Application to two examples

As a first example, the case that was used along the entire chapter will be reconsidered.
The number of entrance phases for the runs was fixed to 36 so the discrete Fourier
transform gives results up to the 18th harmonic. The results of the discrete Fourier
transforms for the energy gain and the phase of flights are presented in Fig. 3.12
for ε = 0.06. The results indicate that the coefficients beyond the 7th harmonic are
negligible. The polynomes are therefore searched up to the 7th power of ε. The
∆WCn ,∆WSn and ∆φCn ,∆φSn coefficients up o the seventh harmonic are illustrated
in Figs. 3.13 and 3.14 respectively.In these figures, the dots are the results obtained
with the numerical routine and the lines represent the results of the polynomial fitting
procedure. The previous results are then used to calculate the energy gain and the
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Figure 3.12: Discrete Fourier transforms of the energy gain and of
the non linear phase of flight functions for the cavity 1 up to the
10th harmonic of the entrance phase φzs.

non linear part of the phase of flight for ε = 0.064 and various entrance phases. The
results are plotted in Fig. 3.15. The agreement with the results of the numerical
routine plotted in dots is good which shows the applicability of the semi-analytical
method.

As a second example, a 5-cell cavity of geometrical beta equal to 1 is considered
for the acceleration of electrons with βzs = 0.6. To determin the coefficients of such
cavity the same procedure than in the previous case is repeated. First, the field
amplitude is fixed so that ε = 1.5 and the results of the discrete fourier transforms
are presented in Fig. 3.16. In this case also, the coeffcients become negligible after
the 7th harmonic, and the fitting polynomes are therefore searched up to the 7th power
of ε. The ∆WCn ,∆WSn and ∆φCn ,∆φSn coefficients are presented in Figs. 3.17 and
3.18. Examples of energy gain and non linear phase of flight as a function of the
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Figure 3.13: coefficients
∆WCn

εn
and

∆WSn

εn
of the nth harmonic for

the 0th to the 7th harmonic for the cavity 1.
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Figure 3.14: coefficients
∆φCn
εn

and
∆φSn
εn

of the nth harmonic for the
0th to the 7th harmonic for the cavity 1.
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Figure 3.15: Calculation of the energy gain and of the non linear
phase of flight for ε = 0.064 and various entrance phases for the
cavity 1. The agreement with the numerical result (plotted in dots)
is satisfying.
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Figure 3.16: Discrete Fourier transforms of the energy gain and
of the non linear phase of flight functions for cavity 2. The results
appear negligible beyond the 7th harmonic.

entrance phase for ε = 1.1 are illustrated in Fig. 3.19. In this example too, the
agreement with the results from the numerical routine is good.

3.3 Conclusion

In this chapter the longitudinal beam dynamics in elements where the phase law is
non linear was presented. The usual d-g-d method used for linear phase law was re-
viewed for symmetric field cases and extended to non symmetric ones. It was shown
that non linear phase law cases could be approached by fractioning the element into
pieces and applying the thin d-g-d method to each of them. Doing so, the usual
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Figure 3.17: Coefficients
∆WCn

εn
and

∆WSn

εn
of the nth harmonic for

the 0th to the 7th harmonic for the cavity 2.
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Figure 3.18: coefficients
∆φCn
εn

and
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of the nth harmonic for
the 0th to the 7th harmonic for the cavity 2.
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Figure 3.19: Calculation of the energy gain and of the non linear
phase of flight for ε = 1.1 and various entrance phase for cavity 2.
The agreement with the numerical result plotted in dots is satisfying.

concept of average phase had to be defined more clearly, numerical routine were nec-
essary, and the dependence of the final results upon the entrance parameters is lost.
A more general method to calculate the longitudinal dynamics, based on analytical
iterations was developed. Analytical solutions after three iterations were presented
and illustrated. The form of the solutions thus obtained suggest a general formulation
for the energy gain and for the phase of flight functions, where the dependence on
the different variables can be efficiently separated. It was demonstrated that such
a general form was indeed verifying the initial coupled system of integral equations
describing the longitudinal dynamics. Although the general form of the solution is
known, some of its coefficients are not explicitely known. A semi-analytical method
relying on a numerical routine to calculate these coefficients was eventually presented
and illustrated for a couple of examples. After determining the coefficients for each
case, the analtyical formulation was used and its results successfully compared to
the results from a purely numerical routine. The general resolution of the longitudi-
nal dynamics in an accelerating element was only dealing with on-axis particles and
therefore, the effect of their transverse position was not considered. For a linear phase
law, small transverse displacement, and axis symmetric elements, a corrective term
exists in the thin lense approximation method and is obtained by considering the
transverse offset constant within the element and by showing that the dependence of
the longitudinal field with respect to the transverse position can be expressed using
the modified Bessel’s function of the zeroth order I0 [43]. If the offset of the particle is
assumed constant, the general form of the results obtained in this chapter can simply
be modified by replacing ε by εI0(kzsrzs), where rzs is the initial transverse offset.
Also, the effect of an inital angle supposed constant within a cavity was shown to
bring a term proportional to the modified Bessel’s function of the first order I1. Such
an approach in the non linear phase law context would not be very satifying since
large variations of the particle’s beta are automatically linked to large variations of
the particle’s transverse angle. To consider accurately the effect of the transverse
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position and angle in the case of a non linear phase law requires to solve a system of
six coupled integral equations, where four equations, associated to the calculation of
the transverse displacement and of the transverse angles, should be added to the two
longitudinal equations.
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Appendix A

Dynamic detuning in SRF cavities:
Annex

A.1 Verification of the validity of the voltage so-

lution

In Chapter 2 it was asserted that the second order term of the voltage envelope
differential equation could be neglected. To show that the voltage given by Eq.
(2.10) is, in good approximation, a solution of Eq. (2.4) it is possible to start by
differentiating Eq. (2.5)

¨̃V (t) = RLω1/2
˙̃I + j ˙̃ωṼ + jω̃ ˙̃V

= RLω1/2
˙̃I + ˙̃ω

{ ˙̃V −RLω1/2Ĩ

ω̃

}

+ jω̃ ˙̃V

= ˙̃V
{ ˙̃ω

ω̃
+ jω̃

}

+RLω1/2

{

˙̃I −
˙̃ω

ω̃
Ĩ
}

From there follows

1

2jω
¨̃V + ˙̃V − jω̃Ṽ = ˙̃V

{

1 +
˙̃ω

2jωω̃
+

ω̃

2ω

}

+
RLω1/2

2jω

{

˙̃I −
˙̃ω

ω̃
Ĩ
}

− jω̃Ṽ

It is supposed that the cavity electromagnetic half-bandwidth and the frequency
detuning are much smaller than the cavity oscillating frequency, ω1/2 << ω and
∆ω << ω, respectively. It follows that the amplitude of the complex frequency
defined as ω̃ = ∆ω + jω1/2 is much smaller than the cavity frequency, |ω̃| << ω .
Also, from the assumption that the dynamic detuning contains only slow frequency
components compared to the cavity frequency, |∆̇ω| << |ω∆ω|, it is possible to
conclude that | ˙̃ω| << ω|ω̃| . The previous statements can be used to write

∣

∣

∣

˙̃ω

2jωω̃
+

ω̃

2ω

∣

∣

∣
<< 1
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Using this fact in the voltage differential equation justifies the following approximation

1

2jω
¨̃V + ˙̃V − jω̃Ṽ ≈ ˙̃V +

RLω1/2

2jω

{

˙̃I −
˙̃ω

ω̃
Ĩ
}

− jω̃Ṽ

With Eq. (2.5) it leads to

1

2jω
¨̃V + ˙̃V − jω̃Ṽ ≈ RLω1/2

{ ˙̃I

2jω
+ Ĩ

{

1 −
˙̃ω

2jωω̃

}

}

≈ RLω1/2

{ ˙̃I

2jω
+ Ĩ

}

And because the last condition is that the source current contains only slow frequency

components compare to the cavity frequency,
∣

∣

˙̃I
∣

∣ <<
∣

∣ωĨ
∣

∣, it finally reduces to

1

2jω
¨̃V + ˙̃V − jω̃Ṽ ≈ RLω1/2Ĩ (A.1)

This relation proves that when the first order differential equation written in Eq.
(2.5) is satisfied, the second order differential equation written in Eq. (2.4) is approx-
imately satisfied. Therefore, the voltage solution of the first order differential equation
given by Eq. (2.10) is in good approximation a solution for the initial second order
differential equation.

A.2 Voltage as a mapping of the complex frequency

Since the real part of the complex frequency ω̃0 is the initial detuning ∆ω0 which can
take any real value, and since the imaginary part is the constant half-bandwidth ω1/2

, all the possible values of the complex frequency ω̃0 form a straight line parallel to the
real axis in the complex plane. This frequency domain is illustrated in Fig. A.1. For a
given set of driving current time function and dynamic detuning time function {Ĩ , ω̃}
, the cavity voltage can be seen as a time dependent complex transformation of the
initial frequency ω̃0 . This transformation is governed by the Eq. (2.10). An overview
of the voltage envelope evolution for a given set of functions {Ĩ , ω̃} can be obtained
by applying the transformation to the entire initial complex frequency domain. The
result is a time dependent complex mapping. When a map is drawn at a given time t
it represents all the possible values of the voltage at that time due to all the possible
values of the initial detuning. A map should not be confused with the trajectory
in time of the voltage for a particular value of the initial detuning. In all cases, at
t = 0 , the complex map is the zero point if the initial value of the cavity voltage is
supposed null. Also, according to Eq. (2.8) the voltage is, regardless of the value of
the initial detuning, always initially developing linearly and in phase with the driving
current, therefore the map is initially equivalent to a simple point moving away from
the origin. With time, the set of functions {Ĩ, ω̃} acts non-uniformly on the frequency
domain and the map quickly evolves into a more complex figure. Different example
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Figure A.1: (2a); The possible domain for the initial frequency ω̃0

is a straight line in the complex plane, parallel to the real axis. Some
reference points are chosen on the line to facilitate the visualization
after the complex transformation. (2b); Complex mapping of the

normalized quantity Ṽ (t)

RL Ĩ0
at time t . The trajectory of the reference

point corresponding to ∆ω0 = 0 is drawn as a line with an arrow.

of mappings will be shown using the same visualization model as the one displayed
on Fig. A.1. When the amplitude of the driving current is constant through time the

mappings will conveniently be done for the normalized quantity Ṽ (t)

RL Ĩ0
. The time for

the mapping will be expressed with respect to the time constant of the cavity, defined
as τ1/2 = ω−1

1/2 .

A.3 Voltage solution for a sine detuning function

From Eq. (2.6) and Eq. (2.10) it follows

Ṽ − ṼSF = RLω1/2

∫ t

0

Ĩ(t′)ej
∫ t
t′ ω̃(t′′)dt′′dt′ (A.2)

Considering the case where no voltage is initially present in the cavity, ṼSF = 0,
where the current source is constant through time, Ĩ(t) = Ĩ0, and where the detuning
function is a sine function, ∆ω(t) = ∆ωosc sin(ωosct + θosc), gives for the voltage

Ṽ (t) = ω1/2RLĨ0

∫ t

0

ej
∆ωosc
ωosc

{cos(ωosct′+θosc)−cos(ωosct+θosc)}ejω̃0{t−t′}dt′

Doing the change of variable t′ → u = t− t′ leads to

Ṽ (t) = ω1/2RLĨ0e
−j∆ωosc

ωosc
cos(ωosct+θosc)

∫ t

0

ej
∆ωosc
ωosc

cos(ωosct+θosc−ωoscu)ejω̃0udu

It is possible to write ωosct = 2πN + θ with N integer. Doing the second change of
variable u→ φ = ωoscu brings

Ṽ (N, θ) =
ω1/2

ωosc
RLĨ0e

−j∆ωosc
ωosc

cos(θ+θosc)

∫ 2πN+θ

0

ej
ω̃0
ωosc

φej
∆ωosc
ωosc

cos(θ+θosc−φ)dφ (A.3)
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It is now useful to decompose the integral as a sum on successive entire periods plus
a fraction of a period

Ṽ (N, θ) =
ω1/2

ωosc
RLĨ0e

−j∆ωosc
ωosc

cos(θ+θosc)

{

N−1
∑

n=0









∫ 2π(n+1)

2πn

ej
ω̃0
ωosc

φej
∆ωosc
ωosc

cos(θ+θosc−φ)dφ









+

∫ 2πN+θ

2πN

ej
ω̃0
ωosc

φej
∆ωosc
ωosc

cos(θ+θosc−φ)dφ

}

(A.4)

using the following definitions and relations

σ =
∆ωosc
ωosc

ψ̃ = ψr + jψi ψr =
∆ω0

ωosc
ψi =

ω1/2

ωosc
(A.5)

∫ 2π(n+1)

2πn

ej
ω̃0
ωosc

φej
∆ωosc
ωosc

cos(θ+θosc−φ)dφ = ej2πnψ̃
∫ 2π

0

ejψ̃φejσ cos(θ+θosc−φ)dφ

ãψ̃,N =
N−1
∑

n=0

ej2πnψ̃ =
N

∑

m=1

ej2π(m−1)ψ̃ =
1 − ej2πNψ̃

1 − ej2πψ̃

b̃ψ̃,N = ej2πNψ̃

S̃θ(ϕ) =

∫ ϕ

0

ejψ̃φejσ cos(φ−θ−θosc)dφ

Eq. (A.4) is equivalent to

Ṽ (N, θ) = RLĨ0ψie
−jσ cos(θ+θosc)

{

ãψ̃,N S̃θ(2π) + b̃ψ̃,N S̃θ(θ)
}

(A.6)

The steady state for the voltage ṼSST (θ) is obtained by taking the limit of Eq. (A.6)
when N → ∞. Using the limits limN→∞ãψ̃,N = 1

1−ej2πψ̃ and limN→∞b̃ψ̃,N = 0 leads

for the steady state to

ṼSST (θ) = RLĨ0
ψi

1 − ej2πψ̃
e−jσ cos(θ+θosc)S̃θ(2π) (A.7)

This equation shows that the voltage envelope in the steady state is a periodic function
of frequency ωosc, since it depends only on θ but not on the integer N anymore. To
evaluate the voltage of Eq. (A.6) or Eq. (A.7) requires to solve the complex integral
S̃θ. In the most general case it is not an easy matter due to the complex exponential
term. Nevertheless an approximation is possible when the amplitude of the detuning
oscillatory function is not too large compare to its frequency. In such case, the rotary
exponential term ejσ cos(φ−θ+θosc) can efficiently be expanded into Taylor’s serie. Using

ex =
∞
∑

n=0

1
n!
xn it gives

S̃θ(ϕ) =
∑

n

∫ ϕ

0

ejψ̃φ
{jσ}n
n!

cosn(θ + θosc − φ) dφ (A.8)
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But the cosines elevated to a power can be decomposed with

cos2n−1 x =
1

22{n−1}

n−1
∑

k=0

{

(

2n− 1

k

)

cos({2n− 2k − 1}x)
}

cos2n x =
1

22n

{(

2n

n

)

+
n−1
∑

k=0

{

2

(

2n

k

)

cos({2n− 2k}x)
}

}

(A.9)

From Eq. (A.8) and Eq. (A.9) it is possible to write

S̃θ(ϕ) =
∑

n

P̃n(σ)

∫ ϕ

0

ejψ̃φ cos(n{φ− θ − θosc}) dφ (A.10)

where the P̃n(σ) are polynomes of σ. The coefficients of these polynomes are calcu-
lated and presented in Table A.1 using a decomposition of the exponentiel at the 10th
order which is satisfying for σ < 5. In the case of dynamic detuning induced by the
action of Lorentz forces or a piezoelectric, this decomposition will usually be enough
but if needed the expansion can be pursued to a higher order.

Table A.1: Polynomes P̃n(σ) for the decomposition of
ejσ cos(φ−θ+θosc) up to n=10

P̃n(σ) σ0

0!
j σ

1

1!
σ2

2!21 j σ3

3!22

σ4

4!23 j σ5

5!24

σ6

6!25 j σ7

7!26

σ8

8!27 j σ9

9!28

σ10

10!29

P̃0 1 0 -1 0 3 0 -10 0 35 0 -126

P̃1 0 1 0 -3 0 10 0 -35 0 126 0

P̃2 0 0 -1 0 4 0 -15 0 56 0 -210

P̃3 0 0 0 -1 0 5 0 -21 0 84 0

P̃4 0 0 0 0 1 0 -6 0 28 0 -120

P̃5 0 0 0 0 0 1 0 -7 0 36 0

P̃6 0 0 0 0 0 0 -1 0 8 0 -45

P̃7 0 0 0 0 0 0 0 -1 0 9 0

P̃8 0 0 0 0 0 0 0 0 1 0 -10

P̃9 0 0 0 0 0 0 0 0 0 1 0

P̃10 0 0 0 0 0 0 0 0 0 0 -1

The remaining integrals of Eq. (A.10) are now solvable with
∫

eax cos(bx + c) dx =
eax

a2 + b2
{a cos(bx + c) + b sin(bx + c)}

where x is real. Applying this relation in Eq. (A.10) leads to

S̃θ(ϕ) =
∑

n

P̃n(σ)

−ψ̃2 + n2

{

ejψ̃ϕ{jψ̃ cos(n{ϕ− θ − θosc}) + n sin(n{ϕ− θ − θosc})}

− {jψ̃ cos(n{θ + θosc}) − n sin(n{θ + θosc})}
}

(A.11)
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Figure A.2: Polynomes P̃n(σ). Pn is real for n even and imaginary
for n odd.

An important factor for the voltage solution is S̃θ(2π), using Eq. (A.11) it writes

S̃θ(2π) =
∑

n

−P̃n(σ)

−ψ̃2 + n2
{1 − e2πjψ̃}{jψ̃ cos(n{θ + θosc}) − n sin(n{θ + θosc})}

(A.12)

Considering the case with no initial detuning so that ψr = 0 and inserting in Eq.
(A.7) gives for the steady state voltage

ṼSST (θ) = RLĨ0e
−jσ cos(θ+θosc)

∑

n

P̃n(σ)
ψi

ψi
2 + n2

[

ψi cos(n{θ + θosc})+
n sin(n{θ + θosc})

]

= RLĨ0e
−jσ cos(θ+θosc)

∑

n

P̃n(σ) cos θn cos(n{θ + θosc} − θn)

(A.13)

with tan θn = n
ψi

. The previous treatment is suited for any case with σ < 5 and any
values of ψi which covers almost the entire range of practical interest, but when the
frequency ωosc of the detuning function is much lower than the electromagnetic half-
bandwidth ω1/2 so that ψi � 1, the limitation on the value of parameter σ can be too
restrictive. For such a particular case, it is convenient to restart from the definition of
the integral S̃θ(2π) written in Eq. (A.5) and note that the real exponential term under
the integral decays very fast within the interval of integration. As a consequence,
the slower complex exponential term ejσ cos(φ−θ−θosc) can be approximated by Taylor
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expansion around φ = 0.

S̃θ(2π) =

∫ 2π

0

ejψ̃φejσ cos(φ−θ−θosc)dφ

≈ejσ cos(θ+θosc)

∫ 2π

0

ejψ̃φejφσ sin(θ+θosc)dφ

=ejσ cos(θ+θosc)

[

ejψ̃φejφσ sin(θ+θosc)

j{ψ̃ + σ sin(θ + θosc)

]φ=2π

φ=0

≈ ejσ cos(θ+θosc)

j{ψ̃ + σ sin(θ + θosc)

(A.14)

Using this result in Eq. A.7, and noting that for ψi � 1 it is possible to do the
approximation 1

1−ej2πψ̃ ≈ 1, eventually gives for the steady state voltage

ṼSST (θ) = RLĨ0
ω1/2

ω̃0 + ∆ωosc sin(θ + θosc)
(A.15)

The result of Eq. (A.15) is equivalent to the solution for a static detuning, see Eq.
(2.11), where the initial detuning is replaced by the sum of the initial detuning and
the dynamic detuning. This simple result is due to the fact that the variations of
the detuning function are very slow compare to the electromagnetic time constant
τ1/2, which means that the cavity voltage has always enough ”time ” to reach its
static steady state value for all the values of the detuning. At the opposite, when the
detuning is very fast so that ψi � 1, the voltage can not follow the rapid variations of
the detuning function and an average effect occures. When ψi is small, all the term
of the sum in Eq. (A.13) are small except for the term n = 0. In consequence, for
ψi � 1 the voltage is approximately given by

ṼSST (θ) = RLĨ0e
−jσ cos(θ+θosc)P̃0(σ) (A.16)

From Eq. (A.16) it concludes that for fast detuning the amplitude remains approx-
imately constant through time and that the phase oscillate in quadrature with the
detuning function.
In this section, an approximate solution for the voltage of a cavity under sinusoidal
detuning was developed. An important parameter for this solution was found to be
the ratio of the amplitude and frequency of the sinusoidal detuning function. The
voltage solution contains parameters that depends on this factor, and calculations of
these coefficients were done to cover most of the cases of interest. Particular cases,
when the frequency of the detuning function is much smaller or much larger than the
cavity half-bandwidth, were also presented. The analytical expression for the solu-
tion of the voltage can for example be of interest in the reconstruction of the cavity
mechanical basis parameters as done in section 2.4.2, or in the investigation of the
ponderomotive oscillation phenomenon.



A.4 Semi-analytical scheme to solve general cases of dynamic detuning108

A.4 Semi-analytical scheme to solve general cases

of dynamic detuning

Other than for particular cases of dynamic detuning and RF current functions, the
voltage integral formulation is not solvable analytically. Because the variations of
the cavity frequency are slow, it is possible to efficiently treat the dynamic detun-
ing in a semi-analytical manner. The basic idea is to approximate the continuous
integration of Eq. (2.10) by a discrete summation over successive time intervals ∆t
where analytical results can be applied. Some situations where analytical solutions
are obtainable are shown in Section 2.2.2. The simplest choice for a semi-analytical
scheme is to consider the source current and the cavity frequency constant during a
time interval. The dynamic detuning is then represented by a succession of frequency
steps, between two steps the frequency and the current source are approximated as
constant and the analytical solution of Eq. (2.11) is used for the calculation of the
voltage envelope. The discrete version of this formula with a time interval ∆t can be
written as

Ṽ [t+ ∆t] = ṼSF [t + ∆t] + ṼI [t + ∆t]

= Ṽ [t]ejω̃[t+∆t
2

] +RLĨ[t+
∆t

2
]
jω1/2

ω̃[t+ ∆t
2

]
{1 − ejω̃[t+∆t

2
]∆t} (A.17)

where to optimize the accuracy the values of the detuning and of the driving current
are taken in the middle of the time interval [t; t+ ∆t]. When a frequency increment
δω is applied, the immediate voltage envelope variations are of the same order than
δω
ωc

. Since this ratio is very small compared to unity, the voltage envelope can be
approximated as constant. In other words, the change of the cavity frequency has
a negligible immediate effect on the voltage envelope Ṽ and affects only its first

derivative ˙̃V . It follows that the value of the voltage envelope at the end of a time
interval constitutes the initial condition of the source free voltage for the next time
interval. With the new values of the cavity frequency and of the initial source free
voltage, the calculations for the following time interval can be performed. The process
is repeated until the total period of time is covered. The basic representation of the
semi-analytical method is illustrated in Fig. A.3. For each time interval, the voltage
is obtained by summation of the source free voltage and of the driven voltage as in Eq.
(A.17). The introduction of a numerical process raises a concern on the accuracy for
the calculations. As an example a sinusoidal detuning case is considered and displayed
in Fig. A.4. The voltage behavior is accurately represented even for rather large time
interval. In conclusion, the semi-anlytical method offers a simple and flexible manner
to calculate the voltage in any situation.
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Figure A.3: Semi-analytic method. (a) The voltage is calculated
analytically within a time interval by superposition of the source free
voltage ṼSF and of the driven voltage ṼI . (b) The discrete succes-
sive values of the voltage are showed over the continuous analytical
solution line.

Figure A.4: Accuracy. (a) The continuous detuning function is
discretized in a succession of detuning steps (time in ms for the hor-
izontal axis, and detuning in Hz for the vertical axis ) (b) Evolution
in time of the voltage (Real and imaginary part, arbitrary unit)
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A.5 Optimization of the Qex and of ∆ω as a func-

tion of the cavity voltage and the beam cur-

rent

In Section 2.2.3 the equation for the RF source current needed to maintain the voltage
in steady state during the beam on period was given by

ĨRF = − jω̃Ṽ

RLω1/2

− Ĩb (A.18)

Introducing the normalized detuning ρ̃ = ρejφρ = ω̃
ω1/2

= ∆ω
ω1/2

+ j, Eq. (2.17)gives

ĨRF = −j ρ̃Ṽ
RL

− Ĩb (A.19)

In the following the notations Ṽ = V eφV , Ĩb = Ibe
φb , and ĨRF = IRF e

φRF will be used.
Dividing Eq. (A.19) by −Ĩb and taking the modulus yields

IRF
Ib

= |1 +
ρV

RLIb
ej{−

π
2
+φρ+Φ}| (A.20)

where Φ = π + φV − φb is the chosen average accelerating phase for the beam.
Introducing the shorthand dimensionless parameter νb = V

RLIb
and taking the square

of the Eq. (A.20) gives

I2
RF

I2
b

=
{

1 + νb{cos Φ +
∆ω

ω1/2

sin Φ}
}2

+
{

νb{sin Φ − ∆ω

ω1/2

cos Φ}
}2

={1 + ν2
b + 2νb cos Φ} + νb

∆ω

ω1/2

{2 sin Φ + νb
∆ω

ω1/2

}
(A.21)

Minimizing the required RF power with respect to the value of the detuning is equiv-
alent to searching for the value ∆ωopt that makes null the derivative of Eq. (A.21)
with respect to ∆ω. It follows

νb{2 sinΦ + νb
∆ωopt
ω1/2

} + ν2
b

∆ωopt
ω1/2

= 0

∆ωopt = −ω1/2

νb
sin Φ

Using Ib = 2Ib0 and RL = 1
2
r
Q
QL = 1

4
r
Q

ω
ω1/2

, the value of the detuning that minimizes

the required RF power is

∆ωopt = −ω
2

r
Q
Ib0

V
sin Φ (A.22)

Eq. (A.22) gives the value for the detuning that minimizes the RF power in function
of the cavity voltage and the beam current. This value is independent of the Qex of the
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cavity. When the beam is accelerated with a null synchronous phase, it is optimal to
set the cavity on resonance. However, if the synchronous phase is non null the cavity
should be adequately detuned to minimize the required RF power. Assuming that

Eq. (A.22) is satified, using it in Eq. (A.21), and recalling that IRF =
√

8PRF
RL

leads

to

PRF =
I2
b

8

{

{RL +
V 2

RLI
2
b

+ 2
V

Ib
cos Φ} − RL sin2 Φ

}

(A.23)

The value of the Qex that minimizes the required RF power makes the derivative of
Eq. (A.23) with respect to RL equal to zero, namely:

1 −
{

V

RLIb

}2

− sin2 Φ =0

cos2 Φ =

{

V

RLIb

}2

It follows, assuming Φ between −π
2

and π
2

RL =
V

Ib cos Φ
(A.24)

Using Ib = 2Ib0 and RL = 1
2
r
Q
QL = 1

4
r
Q

ω
ω1/2

it is possible to write the optimum value

of QL as

QLopt =
V

r
Q
Ib0 cos Φ

(A.25)

It should be mentioned that the value of QL is found independent of ∆ω because it
was assumed that the cavity detuning satisfied Eq. (A.22). If no such assumption
was made, the optimum QL would depend on ∆ω. Using the results of Eq. (A.24)
in Eq. (A.23) gives the minimum RF power PRFopt required to maintain the cavity
voltage in steady state when the beam is on

PRFopt = Ib0V cos Φ = Pb (A.26)

The result of Eq. (A.26) means that for optimum values of QL and ∆ω, the minimum
required power is simply equal to the power extracted by the beam. The results of
Eq. (A.26) can be used to find

ρ =
1

cos Φ
; φρ = Φ +

π

2
(A.27)

These results will be used in the following.

A.6 Additional RF power for non optimized Qex

and ∆ω

In Section A.5 it was shown that the power required to accelerate a beam can be
minimized by choosing the appropriate external Q and detuning for the cavity. If
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both of these parameters are not optimum, the required RF power is larger. Scaling
of such power increases will be presented next. Coming back to Eq. (A.21) and using

IRF =
√

8PRF
RL

gives

PRF =
1

8
RLI

2
b {1 + ν2

b + 2νb cos Φ} + νb
∆ω

ω1/2

{2 sin Φ + νb
∆ω

ω1/2

} (A.28)

but writing ∆ω = ∆ωopt + δω it follows

νb
∆ω

ω1/2

{2 sinΦ + νb
∆ω

ω1/2

} = − sin Φ
∆ω

∆ωopt
{2 sin Φ − sin Φ

∆ω

∆ωopt
}

= − sin2 Φ
∆ω

∆ωopt
{2 − ∆ω

∆ωopt
}

= − sin2 Φ{1 +
δω

∆ωopt
}{1 − δω

∆ωopt
}

= − sin2 Φ{1 − { δω

∆ωopt
}2}

using RL = RLopt + δRL , QL = QLopt + δQL , and q = δRL
RLopt

= δQL
QLopt

leads to

νb =
V

RLIb
=

V

RLoptIb

1

1 + q
= cos Φ{1 − q

1 + q
}

Using these results in Eq. (A.28) and writing ε = δω
ω1/2opt

gives

PRF =
1

8
RLI

2
b {1 + cos2 Φ{1 − q

1 + q
}2 + 2 cos2 Φ{1 − q

1 + q
} − sin2 Φ + sin2{ δω

∆ωopt
}2}

=
1

2
RLI

2
b cos2 Φ{1 − q

1 + q
+

1

4
{ q

1 + q
}2 +

1

4
tan2 Φ{ δω

∆ωopt
}2}

=
1

2
RLoptI

2
b cos2 Φ{1 + q}{1 − q

1 + q
+

1

4
{ q

1 + q
}2 +

1

4
ε2}

=Pb + Pb{{−
q

1 + q
+

1

4
{ q

1 + q
}2 +

1

4
ε2} + q{ 1

1 + q
+

1

4
{ q

1 + q
}2 +

1

4
ε2}}

=Pb + Pb
1

4

{

q2

1 + q
+ {1 + q}ε

}

Noting that δPRF = PRF − Pb we get:

δPRF
Pb

=
1

4

{

q2

1 + q
+ {1 + q}ε

}

(A.29)

Eq.(A.29) expresses the necessary additional RF power required for non optimum
external Q and detuning. It is possible to plot the result in a 3D plot as in Fig.
A.5. As done in Section 2.2.3, the result of Eq. (A.29) is usefull to determin some
tolerable limits for the Qex and for the detuning of the cavity, when the available
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RF power is known. An efficient way to spot a region in the parameter space {ε, q}
that corresponds to a given additional amount of RF power is to use contour plot
as displayed in Fig. A.6. In this illustration, the parameter region corresponding to
an additional RF power lower than 100 percent of the minimum required RF power
is identified. In practical cases, the available additional RF power is known and the
previous contour plot technique can be used to determin the acceptable region for the
external Q and the detuning. Several examples are presented in section 2.2.3 based
on the SNS SC cavities parameters.
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Figure A.5: Required additional RF power for non optimum ex-
ternal Q and detuning. The plotted variables are δPRF

Pb
, q = δQL

QLopt
,

and ε = δω
ω1/2opt

.

A.7 Solution to the wave equation

In section 2.3.1, the modeling for the cavity vibration was approached using a simple
vibrating string. To solve the string problem requires to solve the traditional wave
equation written in Eq. (2.29). The solution process is presented in this section.
Considering first the homogeneous part of Eq. (2.29) and searching its solution under
the separable form u(x, t) = α(x)β(t) leads to

α(x)β̈(t) + aα(x)β̇(t) − c2α̈(x)β(t) = 0

Dividing by αβ and separating the time and spatial components gives

β̈ + aβ̇

β
=
c2α̈

α
(A.30)
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Figure A.6: Example of a contour plot showing the parameter
region corresponding to an additional RF power smaller than 100
percent of the minimum required RF power.

To satisfy this equation requires that the left and the right side functions be equal to
the same constant, noted −Ω2. The Eq. (A.30) is then equivalent to a system of two
homogeneous ordinary differential equations

{

α̈+K2α = 0

β̈ + Ω
Q
β̇ + Ω2β = 0

(A.31)

where K = Ω
c

and where, for convenience, the damping parameter is introduced with
a = Ω

Q
. The general solution of the spatial equation is

α(x) = A cos(Kx) +B sin(Kx)

Using the boundary conditions for the string leads to the appearance of spatial modes
satisfying

αn(x) = B sin(Knx) (A.32)

with the conditions Kn = nπ
l

and n is an integer. For each value of Kn corresponds
a pulsation Ωn = Knc. Using this relation in Eq. (A.31) it is possible to write the
solution of the time differential equation as

βn(t) = e−ηΩnt{Cn cos(µΩnt) +Dn sin(µΩnt)} (A.33)

with the parameters µ = 1
2Q

and µ =
√

1 − η2, and where the coefficients Cn and Dn

depend on the initial conditions of the transverse displacement. The total displace-
ment is given by summation over the modes

u(x, t) =
∑

n

un(x, t) =
∑

n

αn(x)βn(t) (A.34)



A.8 Solution of an ordinary second order differential equation 115

Since the solution of the homogeneous part of the Eq. (2.29) can be decomposed on
a spatial modal basis, it is of interest to decompose the driving force on such a basis.

g(x)h(t) =
∑

n

vn(t) sin(Knx) (A.35)

The contribution of the driving force to a particular spatial mode can be found by
projecting both sides of Eq. (A.35) onto a vector of the spatial modal basis

∫ l

0

g(x)h(t) sin(Kmy) dy =
∑

n

∫ l

0

sin(Kny) sin(Kmy) dy

using the orthogonality property of the spatial modal basis
∫ l

0
sin(Kn) sin(Km) dy =

δ(Km−Kn)
2

leads for the time dependent coefficient to

vm(t) = h(t)
2

l

∫ l

0

g(x) sin(Kmy) dy

= wmh(t)

(A.36)

The parameter wm can be understood as the projection of the driving force on the
mth vector of the spatial basis. Assuming that the solution of the inhomogeneous
equation has a form decomposable on the spatial basis,

u(x, t) =
∑

m

Um(t) sin(Kmx) (A.37)

and replacing in Eq. (2.29) leads to

Üm +
Ωm

Q
U̇m + Ω2

mUm = wmh(t) (A.38)

Eq. (A.37) is an ordinary inhomogeneous second order equation that can be solved
using the superposition principle as shown in Section A.8. To obtain the solution for
the total transverse displacement of the vibrating string, the solution to Eq. (A.38)
can be inserted in Eq. (A.37). The wave equation for the transverse displacement is
solved and the result is usable for the estimation of the detuning.

A.8 Solution of an ordinary second order differen-

tial equation

Considering the a system representable by an ordinary second order differential equa-
tion

ẍ(t) +
ω

Q
ẋ(t) + ω2x(t) = ω2f(t) (A.39)

The homogeneous part of Eq. (A.39) has for general solution

x = x1e
jω̃1t + x2e

−jω̃∗

1 t (A.40)
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with η = 1
2Q

, µ =
√

1 − η2, and ω̃1 = ω(µ + jη). The two coefficients x1 and x2 are

obtained from the initial conditions x(0) and ẋ(0). To solve the inhomogeneous part
of Eq. (A.39) the principle of superposition can be applied. First it is possible to
consider a driving function ω2f only applied for a infinitesimal amount of time dt.
When the driving force is applied, the second derivative takes the value ẍ = f . Using
the definition of the second derivative it is possible to write that after dt, the first
derivative has changed by an amount

dẋ = ω2fdt (A.41)

The change of x is of second order and can therefore be neglected. Since the driving
was only an impulse, the system is now undriven and its behavior is given by the
homogeneous part of Eq. (A.39). The initial conditions are given by

{

x(dt) = 0

ẋ(dt) = ω2fdt
(A.42)

The solution of the homogeneous equation is written in Eq. (A.40). The initial
conditions of Eq. (A.42) leads for the coefficients to

{

x1 = ωf
2jµ
dt

x2 = −x1

The solution for this driving impulse is

x =
ωf

2jµ

{

ejω̃1t − e−jω̃
∗

1t
}

(A.43)

Coming back to the initial problem, the driving function f can be seen as a succession
of impulses. The superposition principle can be applied and the particular solution
to Eq. (A.39) is given by the convolution integral

x =

∫ t

0

ωf(t′)

2jµ

{

ejω̃1{t−t′} − e−jω̃
∗

1{t−t′}
}

dt′ (A.44)

The general solution is now obtained by summing the results of Eq. (A.40) and Eq.
(A.44)

x = x1e
jω̃1t + x2e

−jω̃∗

1 t +

∫ t

0

ωf(t′)

2jµ

{

ejω̃1{t−t′} − e−jω̃
∗

1{t−t′}
}

dt′ (A.45)

where x1 and x2 are related to the initial conditions by

x1 =
1

2

{−j
µ

{ ẋ(0)

ω
+ ηx(0)

}

+ x(0)
}

x2 =
1

2

{ j

µ

{ ẋ(0)

ω
+ ηx(0)

}

+ x(0)
}

(A.46)
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Another possible manner to write Eq. (A.45) is

x = e−ηωt
{

x(0) cos(µωt) +
1

µω
{ẋ(0) + ηωx(0)} sin(µωt)

}

+
ω

µ

∫ t

0

f(t′)e−ηω{t−t
′} sin(µω{t− t′}) dt′

(A.47)

A.8.1 Solution for a constant forcing f(t) = f0

Considering null input conditions so that x1 = x2 = 0 and introducing the function
f(t) = f0 in Eq. (A.45) gives

x =
ωf0

2jµ

∫ t

0

{

ejω̃1{t−t′} − e−jω̃
∗

1{t−t′}
}

dt′

=
ωf0

2jµ

{ j

ω̃1

{

1 − ejω̃1t
}

+
j

ω̃∗
1

{

1 − e−jω̃
∗

1 t
}

}

Noting ω̃1 = |ω̃1|ejΦ1 = ωejΦ1 it follows

x =
ωf0

2µ

{2 cos Φ1

ω
− 1

ω

{

ejω̃1t−Φ1 + e−jω̃
∗

1 t+Φ1
}

}

=
ωf0

2µ

{2µ

ω
− e−ηωt

ω

{

ejµωt−Φ1 + e−jµωt+Φ1
}

}

Finally it leads to

x = f0

{

1 − 1

µ
e−ηωt cos(µωt− Φ1)

}

(A.48)

In the steady state this quantity will be equal to xSST = f0.

A.8.2 Solution for a complex exponential forcing f(t) = f0e
jω̃0t

With null input conditions so that x1 = x2 = 0 and the driving function f(t) = f0e
jω̃0t,

Eq. (A.45) becomes

x =
ωf0

2jµ

∫ t

0

{

ejω̃1tej{ω̃0−ω̃1}t′ − e−jω̃
∗

1 tej{ω̃0+ω̃∗

1}t′
}

dt′

=
ωf0

2jµ

{ −j
ω̃0 − ω̃1

{ejω̃0t − ejω̃1t} +
j

ω̃0 + ω̃∗
1

{ejω̃0t − e−jω̃
∗

1 t}
}

Rearranging it gives

x = −ωf0

2µ

{

ejω̃0t
{ 1

ω̃0 − ω̃1
− 1

ω̃0 + ω̃∗
1

}

− ejω̃1t

ω̃0 − ω̃1
+

e−jω̃
∗

1 t

ω̃0 + ω̃∗
1

}

(A.49)

In the case where ω̃0 is real, the forcing function has a constant amplitude equal to
f0 and in the steady state, Eq. (A.49) leads to

xSST = f0Q
ω

ω0

ejψ
√

1 + tan2 ψ
ej{ω0t−π

2
} (A.50)
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with tanψ = Q( ω
ω0

− ω0

ω
). On resonance ω0 = ω and from Eq. (A.50), xSST = f0Q.

Some typical behaviors for the amplitude of x and for the phase ψ as a function of
the ratio ω0

ω
are plotted in Fig. A.7, for a few values of the damping parameter Q.
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Figure A.7: Amplitude and phase of a driven oscillator, in function
of the frequency ratio ω0

ω
, in the case of ω̃0 real.

A.9 Cavity in phase locked operation

When a SC cavity is dynamically detuned, its matching to the RF is varying. It was
seen in Section 2.2 that to ensure the development of the voltage and its stability, the
RF source ratings had to be controled or the dynamic detuning had to be actively
compensated. A possible way to fill a cavity under dynamic detuning is the phase
locked loop configuration [38]. A phase locked loop is a feedback loop designed to keep
the phase between the RF source and the cavity voltage at a given constant value. The
filling pattern of a cavity is determined by the setting of this phase and is independent
of the dynamic variation of the cavity frequency. This can simply be proven by
first writing the complex voltage envelope Ṽ and the complex driving current Ĩ as
real amplitudes time complex exponentials where both are possibly varying in time:

Ṽ = V ejΦṼ and Ĩ = IejΦĨ . Differentiating the relation for the voltage gives ˙̃V =
{V̇ + jΦ̇Ṽ V }ejΦṼ . Introducing these equations in Eq. (2.5) leads to

V̇ + j{Φ̇Ṽ − ω̃}V = ω1/2RLIe
j{ΦĨ−ΦṼ } (A.51)

Coming back to the definition of the complex frequency ω̃ = ∆ω + jω1/2 and
separating the real part from the imaginary part in Eq. (A.51) give the system of
coupled differential equations

{

V̇ + ω1/2V = ω1/2RLI cos(ΦĨ − ΦṼ )

{Φ̇Ṽ − ∆ω}V = ω1/2RLI sin(ΦĨ − ΦṼ )
(A.52)
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In the case of a phase locked loop, the phase difference between the RF current
source and the cavity voltage is kept constant through time, and it is interesting to
define a phase loop parameter θl = ΦĨ − ΦṼ . From Eq. (A.52) it is possible to find
the solution for the voltage amplitude and for the voltage phase

{

V (t) = V0e
−ω1/2t + ω1/2RL cos θl

∫ t

0
I(t′)e−ω1/2{t−t′} dt′

Φ̇V (t) = ∆ω(t) +
ω1/2RLI(t) sin θl

V (t)

(A.53)

The time dependences are explicitely written and as mentioned before, the voltage
amplitude is independent of the detuning. As a consequence the complexity of the
coupled system of the voltage differential equations and the mechanical differential
equations is greatly reduced. Another interesting fact is that the voltage amplitude
development profile depends only of the RF current function. For example, in the
case of a constant RF current, I(t) = I0, and an initially null voltage

V (t) = RLI0 cos θl{1 − e−ω1/2t}

The value of the phase loop parameter θl plays the role of a simple coefficient as
displayed in Fig. A.9. In the particular case where the phase loop is set to zero,
θl = 0, Eq. (A.53) simplifies to

{

V (t) = V0e
−ω1/2t + ω1/2RL

∫ t

0
I(t′)e−ω1/2{t−t′} dt′

Φ̇V (t) = ∆ω(t)
(A.54)

Thus, when θl = 0, the value of the detuning can simply and straightforwardly be
derived from the measurement of the voltage phase. If the phase loop is not equal
to zero, some parasitic signal can appear in the measurements of the detuning, see
Section A.9.1, and the detuning is not strictly equal to the derivative of the voltage
phase anymore.

A.9.1 Parasitic measurement for a non zero phase loop

Assuming the phase between the RF current source and the cavity voltage exactly
equal to zero is a rather ideal case, particularly during the RF turn on transient. In
practice this phase can have some small value. From Eq.(A.53) it is possible to write

Φ̇V (t) = ∆ω(t) +
ω1/2RLI(t) sin θl

V (t)
(A.55)

When the phase loop is equal to zero, the derivative of the voltage phase is exactly
equal to the detuning. In this case, it is possible to obtain the value of the detuning
from the cavity voltage signal. But when the phase loop is not equal to zero, the
second term of the rigth side of Eq. (A.55) is a parasitic signal that can be large,
when the RF source is on, particularly if the voltage is small like during the RF turn
on transient. To illustrate the possible effect of such term in a measurement, a case
is simulated for a pulsed current and a sinusoidal dynamic detuning function. The
current is supposed to raise quickly from zero to a constant value, the phase loop is
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Figure A.8: In a phase locked loop, the voltage amplitude de-
velopment profile depends on the current function, the phase loop
parameter θl only acts as a global multiplication coefficient.

supposed to raise from zero to 2 degrees at the beginning of the pulse. The voltage
development and result for Eq. (A.55) is displayed in Fig. A.9. In Fig. A.9, the
real detuning funtion is also plotted in dashed line. As expected, the parasitic term
is strong at the transient, and a discrepancy between the real detuning value and
the derivative of the voltage phase is observable when the voltage is small. Such a
parasitic signal can be observed in the measured Lorentz detuning profile displayed
in Section 2.5.
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A.9.2 Small modulation of the RF current source in CW

operation

To generate the transfer function associated with the radiation pressure action, the
cavity can be driven in CW with a constant forwarded power having small RF mod-
ulations. Considering an initially empty cavity, driven in a phase locked loop by a
source current of the form

I(t) = I0{1 + ε sin(ωmodt)} (A.56)

where ε is a small parameter and ωmod the frequency of the modulations, gives using
Eq. (A.53)

V (t) = ω1/2RLI0 cos θl

∫ t

0

{1 + ε sin(ωmodt
′)}e−ω1/2{t−t′} dt′

= ω1/2RLI0 cos θl

{ 1

ω1/2

{1 − e−ω1/2t} +
ε

ω2
mod + ω2

1/2

{

ωmode
−ω1/2t

− ωmod cos(ωmodt) + ω1/2 sin(ωmodt)
}

}

In the steady state, the voltage will be equal to

VSST (t) = RLI0 cos θl{1 + ε cosφmod sin(ωmodt + φmod)} (A.57)

where tanφmod = −ωmod
ω1/2

. Basically, the modulations of the source current induce sinu-

soidal modulations of the voltage, in phase for low modulation frequencies compared
to the electromagnetic bandwidth, and in quadrature for high modulation frequencies.
As shown in section A.3 for very fast modulations of the cavity resonant frequency,
very fast modulations of the RF current have a negligible impact on the voltage (the
term cosφmod becomes very small when ωmod � ω1/2). Taking the square of the volt-
age, neglecting the term of second order in ε, and noting the static part of the voltage
associated with the value of the phase loop as Vl = RLI0 cos θl gives

V 2
SST (t) ≈ V 2

l {1 + 2ε cosφmod sin(ωmodt + φmod)} (A.58)

Inserting this result in the Eq. (2.36) and using the results of Eq. (A.50) leads to the
steady state value of the detuning for the mth mechanical mode

∆ωm,SST (t) = −kmV 2
l {1 + 2ε cosφmodQm

Ωm

ωmod

sin(ωmodt+ φmod + ψm − π
2
)

√

1 + tan2 ψm
} (A.59)

where tanψm = Qm( ωm
ωmod

− ωmod
ωm

). This result is used in section 2.4.1 for the recon-
struction of the mechanical basis parameters associated with the radiation pressure
action.
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Appendix B

Longitudinal dynamics in SRF
cavities: Annex

B.1 Drift-gap-drift representation for symmetric

field

For an element having a symmetric electric field profile, it is of interest to perform
the change of variable u = s − zgc = s − zs − L

2
in Eq. (3.8). Doing so, the starting

of the element is changed from zs to us = −L
2
, the middle of the element from zgc to

ugc = 0, and the end of the element from ze to ue = L
2
. The electric field function is

conveniently written Eu(u) = Ez(u − zgc). Using the geometrical center of the gap
ugc = 0 as the longitudinal reference for the calculations of T and S leads to

Tugc(kzs) =
1

E0L

∫ L
2

−L
2

Eu(u) cos(kzsu) du

Sugc(kzs) =
1

E0L

∫ L
2

−L
2

Eu(u) sin(kzsu) du

(B.1)

For a symmetrical field Eu(−u) = Eu(u), the integral S is null, and the geometrical
center is the electrical center for any beta of the particle. For an antisymmetric field
Eu(−u) = −Eu(u) the integral T is null. Using Eq. (3.8) it follows that the phase at
the geometrical center is in quadrature compare to the average phase, φugc = Φ + π

2
.

In this case it is possible to redefine the average phase by doing the transformation
Φ + π

2
→ Φ. With this change of variable, the energy gain is maximum when the

average phase is equal to π
2
. The energy gain and the average phase for a symmetric

or antisymmetric field are given by
{

∆W (z) = qE0LTugc(kzs) cos Φ

Φ = φugc
{

∆W (z) = qE0LSugc(kzs) sin Φ

Φ = φugc

(B.2)
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The energy gain has been calculated under the approximation of a linear phase law.
This result can be inserted in the expression of the phase in Eq. (3.3). From this
equation, the phase of flight can be separated in a sum of a linear component and
a non-linear component ∆φ = ∆φl + ∆φNL. The linear part is simply ∆φl(z) =
kzs{z− zs} and the non linear part, linked to the variation of the particle’s energy, is
written

∆φNL(ze) =

∫ ze

zs

∆k(z) dz

≈dγk|zs
∫ ze

zs

∆γ(z) dz

(B.3)

where the expansion of the variation of k wih respect to the variation of γ has been
truncated to the first order. This is a valid approximation only if the variations of
the particle’s beta are small compare to its entrance value βzs. The function ∆γ is
obtained from Eq. (3.3)

∆γ(z) =
q

W0

∫ z

zs

Ez(s) cos(φzs + kzs{s− zs}) ds (B.4)

If the field is symmetric with respect to its geometric center, the change of variables
z → x = z − zgc = z − zs − L

2
, respectively s → u = s− zgc = s− zs − L

2
are made

for convenience in Eq. (B.3), respectively Eq. (B.4). It gives

∆φNL(ze) =dγk|zs
∫ L

2

−L
2

∆γ(x + zs +
L

2
) dx

∆γ(x + zs +
L

2
) =

q

W0

∫ x

−L
2

Eu(u) cos(φzs + kzs
L

2
+ kzsu) du

(B.5)

where the function Eu was defined previously. The first integral of Eq. (B.5) can be
solved by part.

∆φNL(ze) =dγk|zs
{[

x∆γ(x + zs +
L

2
)

]L
2

−L
2

−
∫ L

2

−L
2

x∆γ′(x+ zs +
L

2
) dx

}

=dγk|zs
{

L

2
∆γ(ze) −

q

W0

∫ L
2

−L
2

xEu(x) cos(φzs + kzs
L

2
+ kzsx) dx

}

=dγk|zs
{

L

2
∆γ(ze) +

q

W0

sin(φzs + kzs
L

2
)

∫ L
2

−L
2

xEu(x) sin(kzsx) dx

}

=dγk|zs
{

L

2
∆γ(ze) −

q

W0
E0LT

′
ugc(kzs) sin Φ

}

(B.6)

where from Eq. (B.1) it was obatined that T ′
ugc(kzs) = − 1

E0L

∫
L
2

−L
2

xEu(x) sin(kzsx) dx,

and using the fact that for a symmetric field, the average phase is equal to the physical



B.1 Drift-gap-drift representation for symmetric field 124

phase at the geometrical center Φ = φzs + kzs
L
2
. From Eq. (3.3), Eq. (B.2) and Eq.

(B.6), it is possible to write the energy gain and the phase of flight for an accelerating
element having a symmetrical field.

∆W (ze) = qE0LT (kzs) cos Φ

φ(ze) = dγk|zs
{

L

2
∆γ(ze) −

q

W0

E0LT
′(kzs) sin Φ

}

+ φzs + kzs{ze − zs}
(B.7)

where for convenience it is here implied that T (k) = Tugc(k). These longitudinal
transformations give the energy gain and the phase of flight for the entire accelerating
gap. Using the idea of Lapostolle [45], the element can conveniently be redefined as
a succession of three elements. A drift space from the longitudinal entrance zs to
the middle of the gap zgc, an infinitesimal gap where kicks in energy and phase are
applied, and a second drift space from the middle to the end of the element ze.
The total energy gain and phase of flight are given by summation over the three
consecutive transformations. During the drifts, the energy of a particle is unchanged
and its phase of flight linear. If the kick in energy of Eq. (B.7) is applied at the
middle of the element, the phase of flight in the drift-gap-drift representation is given
by

φ(ze) = φzs + ∆φdrift1 + ∆φgap + ∆φdrift2

= φzs + kzs
L

2
+ ∆φgap +

{

kzs + dγk|zs∆γ(ze)
}L

2

(B.8)

Since this result should be equivalent to the result of Eq. (B.7), it gives the expression
for the kick in phase that has to be applied in the middle.

∆φgap = −dγk|zs
q

W0
E0LT

′(kzs) sin Φ (B.9)

With dγk|zs = − kzs
β2
zs
γ3
zs

, the gap transformations can eventually be written as

∆Wgap = qE0LT (kzs) cos Φ

∆φgap =
qkzsE0L

β2
zsγ

3
zsW0

T ′(kzs) sin Φ
(B.10)

The drift-gap-drift representation is illustrated in Fig. B.1. The previous development
is valid for a gap with symmetric field. If the gap is not symmetric the kick in phase
in Eq. (B.9) is not correct. Also, if the accelerating element is long and the variation
of the particle’s beta non negligible, its accuracy is questionable.

B.1.1 Transformation using a reference particle

In Eq. (3.15), the average phase depends on the entrance velocity and entrance
phase, it is in consequence different for every particle of a bunch. It is possible to
express all these different average phases with respect to the average phase Φrp of
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Figure B.1: Energy gain and phase of flight for a single gap
with symmetric field. The drift-gap-drift approximation is drawn in
dashed line and the continuous functions are plotted in solid lines.

a reference particle (rp) in the bunch. To distinguish between the reference particle
and all the other particles, the index rp will be used. For example, the electrical
center position of the reference particle will be written zrp,ec. Also, the difference of
any value with respect to the corresponding reference particle’s one will be written
using the δ symbol. For example, the average phase of a particle can be written
δΦ = Φ − Φrp. Since the phase law is supposed linear, the average phase difference
generated by a dispersion in the particle’s entrance phases and entrance velocities
is δΦ = δφzs + δkzs{L2 + uec,rp} + kzsδuec. The transformation using the reference
particle’s average phase is given by

∆Wgap = qE0LT cos(Φrp + δΦ)

∆φgap =
qkzsE0L

β2
zsγ

3
zsW0

T ′ sin(Φrp + δΦ − ΘT,S + ΘT ′,S′)
(B.11)

In Eq. (B.11) the average phase Φrp can now be treated as a free parameter and can
be understood as the usual average phase quoted for the acceleartion of a bunch in
a cavity. This suppose that the reference particle is chosen as representative of the
bunch. A common practice is to define a virtual particle having an entrance energy
equal to the average entrance energy of the bunch and a entrance phase equal to the
average entrance phase of the bunch. Considering a bunch of N particles

Wzs,rp =< Wbunch >=
N

∑

n=1

Wzs,n

φzs,rp =< zbunch >=

N
∑

n=1

φzs,n

(B.12)
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B.1.2 Liouvillian character of the transformation

According to Liouville’s theorem, the area in the phase-space coordinates (δW, δφ)
should be conserved. It has been shown that the longitudinal transformation of
the drift-gap-drift representation satisifes this theorem up to the second order for
an element with longitudinal electric field symmetric with respect to the geometrical
center. [43]. Such verification should be done in the case of a non-symmetric element.
For this, the Jacobian determinant of the functions δWf(δWi, δφi) and δφf(δWi, δφi)
has to be calculated and found close to the unity. The Jacobian determinant is given
by

∂(δWf , δφf)

∂(δWi, δφi)
= |J | =

∣

∣

∣

∣

∣

∣

∣

∣

∂ δWf

∂ δWi

∂ δφf
∂ δWi

∂ δWf

∂ δφi

∂ δφf
∂ δφi

∣

∣

∣

∣

∣

∣

∣

∣

(B.13)

where the indexe i respectively f refers to a value before respectively after the trans-
formation. The energy gain and the phase of flight for the transformation are noted
as before ∆W and ∆φ. In the phase space coordinates it leads to δWf = δWi+ δ∆W
and δφf = δφi + δ∆φ which gives for the determinant

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

1 +
∂ (δ∆W )

∂ δWi

∂ (δ∆φ)

∂ δWi

∂ (δ∆W )

∂ δφi
1 +

∂ (δ∆φ)

∂ δφi

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 + ε11 ε12

ε21 1 + ε22

∣

∣

∣

∣

∣

(B.14)

For a drift space of length L, the particles experience no energy gain so δ∆W = 0
and the phase of flight is linear so δ∆Φ = Lδki. It follows that ε11 = ε22 = ε21 = 0.
ε21 is not null but the determinant of the Jacobian matrix is exactly equal to one,
which means that the transformation for a drift space is Liouvillian. To insure the
Liouvillain character for the drift-gap-drift transformation it must be proven that the
determinant is also close to unity for the gap transformation given in Eq. (B.11).
Using the Taylor’s theorem of the mean at the first order gives for a function of two
variables f(x0 +δx, y0 +δy)−f(x0, y0) ≈ δx∂f

∂x
(x0, y0)+δy

∂f
∂y

(x0, y0). Using this result
for the functions ∆Wgap and ∆φgap leads to

δ∆Wgap(δWi, δφi) =∆Wgap(Wi,rp + δWi, φi,rp + δφi) − ∆Wgap(Wi,rp, φi,rp)

=
∂∆Wgap

∂δWi

∣

∣

∣

∣

rp

δWi +
∂∆Wgap

∂δφi

∣

∣

∣

∣

rp

δφi

δ∆φgap(δWi, δφi) =∆φgap(Wi,rp + δWi, φi,rp + δφi) − ∆φgap(Wi,rp, φi,rp)

=
∂∆φgap
∂δWi

∣

∣

∣

∣

rp

δWi +
∂∆φgap
∂δφi

∣

∣

∣

∣

rp

δφi
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Using the relations

T ≈ T rp + T
′
rpdγk

δWi

W0

T ′ ≈ T ′
rp + T ′′

rpdγk
δWi

W0

ΘS,T ≈ ΘS,T,rp + Θ′
S,T,rpdγk

δWi

W0

ΘS′,T ′ ≈ ΘS′,T ′,rp + Θ′
S′,T ′,rpdγk

δWi

W0

δφi =δφzs + δkzs
L

2

δΦ ≈δφi + Θ′
S,T,rpdγk

δWi

W0

(B.15)

gives

δ∆Wgap(δWi, δφi) =qE0L







dγk{−TΘ′
T,S sin Φrp + T

′
cos Φrp}

δWi

W0

−T sin Φrp δφi







δ∆φgap(δWi, δφi) = − q
E0L

W0

dγk











{

(T ′dγk)
′ sin(Φrp − ΘT,S + ΘT ′,S′)

+ T ′Θ′
T ′,S′dγk cos(Φrp − ΘT,S + ΘT ′,S′)

}

δWi

W0

T ′ cos(Φrp − ΘT,S + ΘT ′,S′) δφi











(B.16)

where all the functions depending on the energy (dγk, T, S, T ,ΘS,T , T
′, S ′...) are eval-

uated for the reference particle energy at the entrance of the gap Wi,rp = Wzs,rp, and
where the prime denotes as before a derivation with respect to k. With Eq. (B.16)
it is possible to calculate the value of the Jacobian for the gap transformation. This
one satisfies the Liouville’s theorem up to the second order if ε11 + ε22 = 0. With
cos arctan x = 1√

1+x2
, sin arctanx = x√

1+x2
, Θ′

S,T = TS′−ST ′

T
2 it writes

ε11 + ε22 = − q
E0L

W0
dγk

{

T ′ cos(Φrp − ΘT,S + ΘT ′,S′) + TΘ′
S,T sin Φrp − T

′
cos Φrp

}

= − q
E0L

W0
dγk















T ′{TT
′ + SS ′

TT ′ cos Φrp +
ST ′ − S ′T

TT ′ sin Φrp}

+ T
−ST ′ + S ′T

T
2 sin Φrp −

TT ′ + SS ′

T
cos Φrp















=0

(B.17)

In conclusion, the drift-gap-drift transformation for non-symmetric field satisifies the
Liouville’s theorem up to the second order. This result apply for any type of non-
symmetric longitudinal field profile. For example, in the case of a multicell super-
conducting cavity, the end-cells field profile are non-symmetric due to the large field



B.2 Analytic iterations for the longitudinal dynamics in accelerating
cavities 128

extension of the field lines into the beampipe region, also the amplitude of the field in
each cell of the cavity can be different creating a global field unbalance and shifting
the electrical center away from the geometrical center. Fig. B.2 illustrates the con-
servation of the longitudinal phase space area for an on-axis field profile of the type
Ez(s) = Em sin kms+ φasym where φasym is a parameter introducing a field asymetry.
As expected the quantity ε11ε22 − ε12ε21 is found close to zero.

-Π -Π�2 0 Π�2 Π
Φasym

0

0.25

0.5

0.75

1

Ε 1
1
Ε 2

2
-Ε

12
Ε 2

1
@´10-2

D

Figure B.2: ε11ε22−ε21ε12 < 1 for a non-symmetric field profile. The
parameter φasym controls the extent of the asymetry. For φasym = 0
the field is symmetric, and for φasym = +/−π the field is asymmetric.

B.2 Analytic iterations for the longitudinal dynam-

ics in accelerating cavities

The initial system of coupled integral equations for the longitudinal dynamics of Eq.
(3.1) has been transformed to a system of integral equations written in Eq. (3.19)
solvable by iteration. It is assumed that the successive energy gain and phase of flight
functions obtained from the iteration process converge toward the solutions of the ini-
tial system of equations. Three analytical iterations have explicitely been performed
and the results are shown next. It appears that the iterative process becomes rapidly
a heavy process and that going to further order become increasingly difficult. But,
carrying the calculations give interesting insights and allows to deduce a rather gen-
eral analytical form for the solutions of the inital system of equations. The validity of
this solution is demonstrated in section B.3. Eventually, a semi-analytical calculation
scheme combining the knowledge of the form for the solution to a numerical routine
to calculate unknown parameters allows to calculate the longitudinal dynamics even
in cases where the phase of flight is strongly non-linear (see section 3.2.3).

B.2.1 First iteration: ∆W0 and ∆Φ0

For the first analytical iteration, the particle is supposed to experience no acceleration
which implies that its velocity remains unchanged through the entire cavity. Since
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∆Φ(z) is the difference between the total phase of flight and its linear part, it follows
immediately

∆W0(z) = 0

∆Φ0(z) = 0
(B.18)

B.2.2 Second iteration: ∆W1 and ∆Φ1

I ∆W1(z)

For the second analytical iteration, The result of ∆Φ0(z) written in Eq. (B.18) is
reentered in Eq.(3.19), it follows

∆W1(z) =
∞

∑

n=0

{ q

n!

∫ z

zs

Ez(s)∂
n
θ cos θ|θ=φL(s)∆Φ0

n ds
}

(B.19)

The only non-nul term is for n = 0, leading to

∆W1(z) = q

∫ z

zs

Ez(s) cos(φzs + kzs{s− zs}) ds

= q
M

∑

m=1

∫ z

zs

Em cos(kms+ φm) cos(φzs + kzs{s− zs}) ds

= q

M
∑

m=1

∆W1,m(z)

where the definition ∆W1,m(z) =
∫ z

zs
Em cos(kms + φm) cos(φzs + kzs{s − zs}) ds is

implied and where the longitudinal electric field is decomposed into a discrete sum of

M cosine functions Ez(z) =
M
∑

m=1

Em cos(kmz + φm) .Carrying the integration for the

∆W1,m(z) it follows, using cos a cos b = 1
2
{cos(a+ b) + cos(a− b)}

∆W1,m(z) =
q

2
Em

∫ z

zs

{cos({km + kzs}s+ φm + φzs − kzszs)

+ cos({km − kzs}s+ φm − φzs + kzszs)} ds

=
q

2
Em

{sin({km + kzs}z + φm + φzs − kzszs)

km + kzs

+
sin({km − kzs}z + φm − φzs + kzszs)

km − kzs

− sin(kmzs + φm + φzs)

km + kzs

− sin(kmzs + φm − φzs)

km − kzs

}

(B.20)
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where it assumed that the denominators are not null. It is useful to introduce the
notations

S(K; Θ;K ′) =

sin
(

{

I
∑

i=1

ki
}

z +
J
∑

j=1

θj

)

L
∑

l=1

k′l

C(K; Θ;K ′) =

cos
(

{

I
∑

i=1

ki
}

z +
J
∑

j=1

θj

)

L
∑

l=1

k′l

(B.21)

with K =
I

∑

i=1

ki , Θ =
J
∑

j=1

θj , and K ′ =
I

∑

i=1

k′i . Using these relations, it is possible to

write Eq. (B.20) under the form

∆W1(z) = ∆W1C(z) cosφzs + ∆W1S(z) sin φzs (B.22)

With the definitions and relations

∆W1C(z) =
M

∑

m=1

∆W1C,m(z)

∆W1S(z) =
M

∑

m=1

∆W1S,m(z)

∆W1C;m(z) =
q

2
Em

4
∑

µ=1

S(K1C;m,µ,Θ1C;m,µ, K
′
1C;m,µ)

∆W1S;m(z) =
q

2
Em

4
∑

µ=1

C(K1S;m,µ,Θ1S;m,µ, K
′
1S;m,µ)

(B.23)

and where the K, Θ and K ′ are conveniently written under a vector format

K1C;m,µ









km + kzs
km − kzs

0
0









Θ1C;m,µ









φm − kzszs
φm + kzszs
φm + kmzs
φm + kmzs









K ′
1C;m,µ









+km + kzs
+km − kzs
−km − kzs
−km + kzs









(B.24)

K1S;m,µ









km + kzs
km − kzs

0
0









Θ1S;m,µ









φm − kzszs
φm + kzszs
φm + kmzs
φm + kmzs









K ′
1S;m,µ









+km + kzs
−km + kzs
−km − kzs
+km − kzs









(B.25)
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II ∆Φ1(z)

The phase slip ∆Φ1 is obtained using the results of ∆W1.

∆Φ1(z) =
∞

∑

n=1

{∂nWk(W )|W=W (zs)

n!

∫ z

zs

∆W n
1 (s) ds

}

(B.26)

The following calculations will be limited to the indexes n = 1, 2 (which is sufficient
to insure accuracy in many cases)

∆Φ1(z) ≈ − kzs
β2
zsγ

3
zs

1

W0

∫ z

zs

∆W1(s) ds+
3kzs
β4
zsγ

4
zs

1

2W 2
0

∫ z

zs

∆W1(s)
2 ds

= ∆Φ1a(z) + ∆Φ1b(z)

(B.27)

where W0 is the mass energy of the considered particles. The result of Eq. (B.22) is
used for the estimation of the integrals.

∫ z

zs

∆W1(s) ds = cosφzs

∫ z

zs

∆W1C(s) ds+ sin φzs

∫ z

zs

∆W1S(s) ds (B.28)

and
∫ z

zs

∆W1(s)
2 ds = cos2 φzs

∫ z

zs

∆W1C(s)2 ds+ sin2 φzs

∫ z

zs

∆W1S(s)
2 ds

+ 2 cosφzs sinφzs

∫ z

zs

∆W1C(s)∆W1S(s) ds

=
1

2

{

∫ z

zs

∆W1C(s)2 ds−
∫ z

zs

∆W1S(s)
2 ds

}

+
1

2

{

∫ z

zs

∆W1C(s)2 ds+

∫ z

zs

∆W1S(s)
2 ds

}

cos 2φzs

+

∫ z

zs

∆W1C(s)∆W1S(s) ds sin 2φzs

(B.29)

To solve the integrals of Eq. (B.28) it is necessary to have the results of the following
integrals

∫ z

zs

S(K; Θ;K ′) ds = C(K; Θ;−KK ′) + C(0; Θ +Kzs;KK
′)

∫ z

zs

C(K; Θ;K ′) ds = S(K; Θ;KK ′) + S(0; Θ +Kzs;−KK ′)

(B.30)

In the particular case where K = 0, the previous integrals become
∫ z

zs

S(0; Θ;K ′) ds = {z − zs}S(0; Θ;K ′)

∫ z

zs

C(0; Θ;K ′) ds = {z − zs}C(0; Θ;K ′)

(B.31)
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It is worthy to point out that since C(K; Θ;K ′) = S(K; Θ+ π
2
;K ′) , having the result

for the function S provides easily the result for the function C and vice-versa. To
solve the integrals of Eq. (B.29) it is necessary to have the results of the following
integrals

∫ z

zs

S(K1; Θ1;K
′
1)S(K2; Θ2;K

′
2) ds =

1

2

{

S(K1 −K2; Θ1 − Θ2; {K1 −K2}K ′
1K

′
2)

+ S(0; Θ1 − Θ2 + {K1 −K2}zs;−{K1 −K2}K ′
1K

′
2)

+ S(K1 +K2; Θ1 + Θ2;−{K1 +K2}K ′
1K

′
2)

+ S(0; Θ1 + Θ2 + {K1 +K2}zs; {K1 +K2}K ′
1K

′
2)

}

(B.32)

∫ z

zs

C(K1; Θ1;K
′
1)C(K2; Θ2;K

′
2) ds =

1

2

{

S(K1 −K2; Θ1 − Θ2; {K1 −K2}K ′
1K

′
2)

+ S(0; Θ1 − Θ2 + {K1 −K2}zs;−{K1 −K2}K ′
1K

′
2)

+ S(K1 +K2; Θ1 + Θ2; {K1 +K2}K ′
1K

′
2)

+ S(0; Θ1 + Θ2 + {K1 +K2}zs;−{K1 +K2}K ′
1K

′
2)

}

(B.33)

∫ z

zs

S(K1; Θ1;K
′
1)C(K2; Θ2;K

′
2) ds =

1

2

{

C(K1 −K2; Θ1 − Θ2;−{K1 −K2}K ′
1K

′
2)

+ C(0; Θ1 − Θ2 + {K1 −K2}zs; {K1 −K2}K ′
1K

′
2)

+ C(K1 +K2; Θ1 + Θ2;−{K1 +K2}K ′
1K

′
2)

+ C(0; Θ1 + Θ2 + {K1 +K2}zs; +{K1 +K2}K ′
1K

′
2)

}

(B.34)

Eq. (B.32), Eq. (B.33), Eq. (B.34) are valid in all cases but when K1 = K2. For this
particular case it writes

∫ z

zs

S(K1; Θ1;K
′
1)S(K1; Θ2;K

′
2) ds =

1

2

{

{z − zs}C(0; Θ1 − Θ2;K
′
1K

′
2)

+ S(2K1; Θ1 + Θ2;−2K1K
′
1K

′
2)

+ S(0; Θ1 + Θ2 + 2K1zs; 2K1K
′
1K

′
2)

}

(B.35)

∫ z

zs

C(K1; Θ1;K
′
1)C(K1; Θ2;K

′
2) ds =

1

2

{

{z − zs}C(0; Θ1 − Θ2;K
′
1K

′
2)

+ S(2K1; Θ1 + Θ2; 2K1K
′
1K

′
2)

+ S(0; Θ1 + Θ2 + 2K1zs;−2K1K
′
1K

′
2)

}

(B.36)
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∫ z

zs

S(K1; Θ1;K
′
1)C(K1; Θ2;K

′
2) ds =

1

2

{

{z − zs}S(0; Θ1 − Θ2;K
′
1K

′
2)

+ C(2K1; Θ1 + Θ2;−2K1K
′
1K

′
2)

+ C(0; Θ1 + Θ2 + 2K1zs; +2K1K
′
1K

′
2)

}

(B.37)

Coming back to Eq. (B.27) and Eq. (B.28) and using the results of Eq. (B.30) gives

∆Φ1a(z) = ∆Φ1aC1
(z) cos φzs + ∆Φ1aS1

(z) sin φzs (B.38)

where

∆Φ1aC1
(z) = − kzs

β2
zsγ

3
zs

1

W0

q

2

M
∑

m=1

Em

{

2
∑

µ=1

{C(K1C;m,µ; Θ1C;m,µ;−K1C;m,µK
′
1C;m,µ)+

C(0; Θ1C;m,µ +K1C;m,µzs;K1C;m,µK
′
1C;m,µ)}+

4
∑

µ=3

C(0; Θ1C;m,µ;K
′
1C;m,µ){z − zs}

}

(B.39)

∆Φ1aS1
(z) = − kzs

β2
zsγ

3
zs

1

W0

q

2

M
∑

m=1

Em

{

2
∑

µ=1

{S(K1S;m,µ; Θ1S;m,µ; +K1S;m,µK
′
1S;m,µ)+

S(0; Θ1S;m,µ +K1S;m,µzs;−K1S;m,µK
′
1S;m,µ)}+

4
∑

µ=3

S(0; Θ1S;m,µ;K
′
1S;m,µ){z − zs}

}

(B.40)

The first part ∆Φ1a(z) of the function ∆Φ1(z) has been calculated, to estimate
∆Φ1b(z), three integrals are preliminary calculated. For the first of them, some sim-
plifying notations are used

K1 = K1C;m,µ Θ1 = Θ1C;m,µ K ′
1 = K ′

1C;m,µ

K2 = K1C;n,ν Θ2 = Θ1C;n,ν K ′
1 = K ′

1C;n,ν

(B.41)

Using these parameters, it writes for the first preliminary integral

∫ z

zs

∆W1S(s)
2 ds =

q2

23

M
∑

m=1

M
∑

n=1

4
∑

µ=1

4
∑

µ=1

EmEn×















S(K1 +K2; Θ1 + Θ2;−{K1 −K2}K ′
1K

′
2) +

S(0; Θ1 + Θ2 + {K1 +K2}zs; {K1 −K2}K ′
1K

′
2) +







[

S(K1 −K2; Θ1 − Θ2; {K1 −K2}K ′
1K

′
2) +

S(0; Θ1 − Θ2 + {K1 −K2}zs;−{K1 −K2}K ′
1K

′
2)

]

if K1 6= K2

{z − zs}C(0; Θ1 − Θ2;K
′
1K

′
2) if K1 = K2















(B.42)
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For the second integral, the parameters are redefined by

K1 = K1S;m,µ Θ1 = Θ1S;m,µ K ′
1 = K ′

1S;m,µ

K2 = K1S;n,ν Θ2 = Θ1S;n,ν K ′
1 = K ′

1S;n,ν

(B.43)

Using these parameters for the second integral gives

∫ z

zs

∆W1C(s)2 ds =
q2

23

M
∑

m=1

M
∑

n=1

4
∑

µ=1

4
∑

µ=1

EmEn×















S(K1 +K2; Θ1 + Θ2; +{K1 −K2}K ′
1K

′
2) +

S(0; Θ1 + Θ2 + {K1 +K2}zs;−{K1 −K2}K ′
1K

′
2) +







[

S(K1 −K2; Θ1 − Θ2; {K1 −K2}K ′
1K

′
2) +

S(0; Θ1 − Θ2 + {K1 −K2}zs;−{K1 −K2}K ′
1K

′
2)

]

if K1 6= K2

{z − zs}C(0; Θ1 − Θ2;K
′
1K

′
2) if K1 = K2















(B.44)

For the third and last preliminary integral, the following definitions apply

K1 = K1C;m,µ Θ1 = Θ1C;m,µ K ′
1 = K ′

1C;m,µ

K2 = K1S;n,ν Θ2 = Θ1S;n,ν K ′
1 = K ′

1S;n,ν

(B.45)

Using these parameters leads to

∫ z

zs

∆W1S(s)∆W1C(s) ds =
q2

23

M
∑

m=1

M
∑

n=1

4
∑

µ=1

4
∑

µ=1

EmEn×















C(K1 +K2; Θ1 + Θ2;−{K1 −K2}K ′
1K

′
2) +

C(0; Θ1 + Θ2 + {K1 +K2}zs; +{K1 −K2}K ′
1K

′
2) +







[

C(K1 −K2; Θ1 − Θ2;−{K1 −K2}K ′
1K

′
2) +

C(0; Θ1 − Θ2 + {K1 −K2}zs; +{K1 −K2}K ′
1K

′
2)

]

if K1 6= K2

{z − zs}S(0; Θ1 − Θ2;K
′
1K

′
2) if K1 = K2















(B.46)

Coming back to Eq. (B.27) and Eq. (B.29) it is possible to write

∆Φ1b(z) = ∆Φ1bC0
(z)

+ ∆Φ1bC2
(z) cos 2φzs + ∆Φ1bS2

(z) sin 2φzs
(B.47)

with the following definitions

∆Φ1bC0
(z) =

kzs
β4
zsγ

4
zs

3

4W 2
0

{

∫ z

zs

∆W1C(s)2 ds+

∫ z

zs

∆W1S(s)
2 ds

}

∆Φ1bC2
(z) =

kzs
β4
zsγ

4
zs

3

4W 2
0

{

∫ z

zs

∆W1C(s)2 ds−
∫ z

zs

∆W1S(s)
2 ds

}

∆Φ1bS2
(z) =

kzs
β4
zsγ

4
zs

3

2W 2
0

∫ z

zs

∆W1C(s)∆W1S(s) ds

(B.48)
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Explicit solutions for these functions can be found by using the results of Eq. (B.42),
Eq. (B.44), and Eq. (B.46). Combining the results of Eq. (B.38) and Eq. (B.47) it
is eventually possible to write

∆Φ1(z) = ∆Φ1C0
(z)

+ ∆Φ1C1
(z) cosφzs + ∆Φ1S1

(z) sin φzs
+ ∆Φ1C2

(z) cos 2φzs + ∆Φ1S2
(z) sin 2φzs

(B.49)

where the indexes a and b were dropped. With the previous relations it is easy to
see that if an average electric field is defined as E0 = 1

|z−zs|
∫ z

zs
|Ez(s)| ds, then the

functions ∆Φ1C1
(z), and ∆Φ1S1

(z) are proportional to qE0

W0
, but the functions ∆Φ1C0

(z)

, ∆Φ1C2
(z) , and ∆Φ1S2

(z) are proportional to
q2E2

0

W 2
0

. The result of Eq. (B.49) contains

only cosine functions up to the second order in φzs because the initial summation of
Eq. (B.26) has been truncated to this order. Without such trunction, Eq. (B.49)
could be found of the form

∆Φ1(z) =

∞
∑

n=0

∆Φ1Cn(z) cosnφzs + ∆Φ1Sn(z) sin nφzs (B.50)

B.2.3 Third iteration: ∆W2 and ∆Φ2

For the third analytical iteration, The result of ∆Φ1(z) is reentered in Eq.(3.19).

∆W2(z) =
∞

∑

n=0

{ q

n!

∫ z

zs

Ez(s)∂
n
θ cos θ|θ=φL(s)∆Φ1

n ds
}

(B.51)

Truncating again at the second order it follows

∆W2(z) =∆W1(z) + q

∫ z

zs

Ez(s) sin(φzs + kzs{s− zs})∆Φ1(s) ds

− q

∫ z

zs

Ez(s) cos(φzs + kzs{s− zs})∆Φ2
1(s) ds

=∆W1(z) + ∆W2a(z) + ∆W2b(z)

(B.52)

To calculate ∆W2a(z), the expression of Eq. (B.49) for ∆Φ1(s) is used. It writes

∆W2a(z) =q

∫ z

zs

Ez(s) sin(φzs + kzs{s− zs})∆Φ1(s) ds (B.53)

Because the function ∆Φ1(s) contains some terms proportional to E0 and higher order
terms proportional to E2

0 , it is worthy to split the previous equation in two parts,
∆W2a(z) = ∆W2a,1(z) + ∆W2a,2(z) with respectively

∆W2a,1(z) = q

∫ z

zs

Ez(s) sin(φzs + kzs{s− zs})×

{∆Φ1C1
(s) cosφzs + ∆Φ1S1

(s) sinφzs} ds
(B.54)
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and

∆W2a,2(z) = q

∫ z

zs

Ez(s) sin(φzs + kzs{s− zs})×

{∆Φ1C0
(s) + ∆Φ1C2

(s) cos 2φzs + ∆Φ1S2
(s) sin 2φzs} ds

(B.55)

Developing the sine function in Eq. (B.54), it is possible to write

∆W2a,1(z) =∆W2a,1C0
(z)

∆W2a,1C2
(z) cos 2φzs + ∆W2a,1S2

(z) sin 2φzs
(B.56)

with the following definitions

∆W2a,1C0
(z) =

q

4

M
∑

m=1

Em









∫ z

zs

{S(K1; Θ1; 1) + S(K2; Θ2; 1)}∆Φ1C1
(s) ds

+

∫ z

zs

{S(K1; Θ1 +
π

2
; 1) + S(K2; Θ2 +

π

2
; 1)}∆Φ1S1

(s) ds









(B.57)

∆W2a,1C2
(z) =

q

4

M
∑

m=1

Em









∫ z

zs

{S(K1; Θ1; 1) + S(K2; Θ2; 1)}∆Φ1C1
(s) ds

−
∫ z

zs

{S(K1; Θ1 +
π

2
; 1) + S(K2; Θ2 +

π

2
; 1)}∆Φ1S1

(s) ds









(B.58)

∆W2a,1S2
(z) =

q

4

M
∑

m=1

Em









∫ z

zs

{S(K1; Θ1; 1) + S(K2; Θ2; 1)}∆Φ1S1
(s) ds

+

∫ z

zs

{S(K1; Θ1 +
π

2
; 1) + S(K2; Θ2 +

π

2
; 1)}∆Φ1C1

(s) ds









(B.59)

From Eq. (B.57) to Eq. (B.59), K1 = kzs + km , K2 = kzs − km , Θ1 = φm − kzszs ,
and Θ2 = −φm − kzszs. The integrals in these same equations are of three types

I1 =a

∫ z

zs

S(K1; Θ1;K
′
1) ds

I2 =

∫ z

zs

S(K1; Θ1;K
′
1)S(K2; Θ2;K

′
2) ds

I3 =b

∫ z

zs

S(K1; Θ1;K
′
1){z − zs} ds

(B.60)

The two first types were already met before and their solutions are given in Eq. (B.30)
and Eq. (B.32), the solution to I3 is

I3 =b

[

S(0; Θ1 +K1zs;−K2
1K

′) + S(K1; Θ1;K
2
1K

′
1)+

C(K1; Θ1;K1K
′
1){z − zs}

]

(B.61)
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Using these results it is possible to write

∫ z

zs

S(Kµ; Θµ;K
′
µ)







a+

b{z − zs}+
C(Kν; Θν;K

′
ν)






ds =















































a

[

C(Kµ; Θµ;−KµK
′
µ)+

C(0; Θµ +Kµzs;−KµK
′
µ)

]

+

b







C(Kµ; Θµ;KµK
′
µ){z − zs}}+

S(Kµ; Θµ;K
2
µK

′
µ)+

S(0; Θµ +Kµzs;−K2
µK

′
µ)






+

1

2















































C(Kµ −Kν; Θµ − Θν;−{Kµ −Kν}K ′
µ −K ′

ν)+
C(0; Θµ − Θν + {Kµ −Kν}zs;−{Kµ −Kν}K ′

µ −K ′
ν)

C(Kµ +Kν ; Θµ + Θν;−{Kµ +Kν}K ′
µ −K ′

ν)+
C(0; Θµ + Θν + {Kµ +Kν}zs;−{Kµ +Kν}K ′

µ +K ′
ν)









if Kµ 6= Kν





S(0; Θµ − Θν;−{Kµ −Kν}K ′
µ −K ′

ν)+
C(Kµ +Kν ; Θµ + Θν;−{Kµ +Kν}K ′

µ −K ′
ν)+

C(0; Θµ + Θν + {Kµ +Kν}zs;−{Kµ +Kν}K ′
µ +K ′

ν)



 if Kµ = Kν















































(B.62)

with the previous result it is now possible to solve Eq. (B.58) and Eq. (B.59). All
the results have been showed explicitely so far. Nevertheless, the increasing weight
of the calculations makes their display difficult. The remaining calculations for the
remaining part ∆W2b, as written in Eq. (B.52), of the energy gain function ∆W2

were carried but will not be explicitely reported here. Also,Same for the calculations
of the phase of flight ∆Φ2. Instead, the general form of their results is presented.

∆W2 = ∆W2,C0
+ ∆W2,C1

cosφzs + ∆W2,S1
sinφzs

+ ∆W2,C2
cos 2φzs + ∆W2,S2

sin 2φzs
+ ∆W2,C3

cos 3φzs + ∆W2,S3
sin 3φzs

∆φ2(βzs , φzs, z, Ez) = ∆φ2,C0
+ ∆φ2,C1

cos φzs + ∆φ2,S1
sinφzs

+ ∆φ2,C2
cos 2φzs + ∆φ2,S2

sin 2φzs
+ ∆φ2,C3

cos 3φzs + ∆φ2,S3
sin 3φzs

(B.63)

The various coefficients depend on the amplitude of the accelerating field E0L, on
the electric charge q, on the entrance beta βzs, and on the field profile, and on the
longitudinal position z. More explicit dependences with respect to the first two of
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these variables are of particular interest. It is found

∆W2,C0
= f1 {qE0L}2 ;

∆W2,C1
= f2 {qE0L}1 + f3 {qE0L}3 ; ∆W2,S1

= f4 {qE0L}1 + f5 {qE0L}3

∆W2,C2
= f6 {qE0L}2 ; ∆W2,S2

= f7 {qE0L}2

∆W2,C3
= f8 {qE0L}3 ; ∆W2,S3

= f9 {qE0L}3

∆φ2,C0
= g1 {qE0L}0 + g2 {qE0L}2 ;

∆φ2,C1
= g3 {qE0L}1 + g4 {qE0L}3 ; ∆φ2,S1

= g5 {qE0L}1 + g6 {qE0L}3

∆φ2,C2
= g7 {qE0L}2 ; ∆φ2,S2

= g8 {qE0L}2

∆φ2,C3
= g9 {qE0L}3 ; ∆φ2,S3

= g10 {qE0L}3

(B.64)

The functions f and g, have been calculated explicitely, for example the function f1

can be deduced from Eq. (B.48). The results of Eq. (B.63) and Eq. (B.64) have
rather particular forms. Based on these reaults, an analytical form for the general
solution of the the initial system of coupled integral equations can be found. Details
on this issue are developed in Section B.3.

B.3 General form of the solution

The coupled system of equations can be written, using Eq. (3.19)

∆Wi(z)

W0

= ε
∞

∑

n=0

{

∫ z

zs

kE(s)

n!
dnθ cos θ|φL(s) ∆φni−1(s) ds

}

∆φi(z) =
∞

∑

n=1

{dnγk|γ(zs)
n!

∫ z

zs

(

∆Wi(s)

W0

)n

ds
}

(B.65)

In chapter 3, the solution to the initial coupled system of integral equation was ap-
proached by analytical iterations. The detail of the calculation up to three iterations
is given in section B.2. From the results it appeared that the solution would be of
the form

∆W

W0
=

∞
∑

n=0

A2n cos 2nφzs +B2n sin 2nφzs

+A2n+1 cos(2n+ 1)φzs +B2n+1 sin(2n+ 1)φzs

∆φ =

∞
∑

n=0

C2n cos 2nφzs +D2n sin 2nφzs

+C2n+1 cos(2n+ 1)φzs +D2n+1 sin(2n+ 1)φzs

with















A,B,C,D2n =
∞
∑

m=2n

a, b, c, d2n,2mε
2m

A,B,C,D2n+1 =
∞
∑

m=2n+1

a, b, c, d2n+1,2m+1ε
2m+1

(B.66)



B.3 General form of the solution 139

The functions A,B,C and D are polynomes of even or odd powers of the parameter ε.
For instance, the few first even polynomes for the functions A can be more explicitely
written

A0 = a0,0ε
0 + a0,2ε

2 + a0,4ε
4 + ....

A2 = a2,2ε
2 + a2,4ε

4 + ....

A4 = a4,4ε
4 + ....

To assert that the energy gain and the phase of flight functions can be written un-
der the forms of Eq. (B.66) means that these forms should be invariant under the
analytical iterative process. To proove this point, it is interesting to point out two re-
markable properties of the solution forms written in Eq. (B.66). The first one is that
all the terms of the energy gain and of the phase of flight functions are polynomes of
even, respectively odd, powers of ε multiplying a cosine or a sine function of an even,
respectively odd, harmonic of the entrance phase φzs. It is therefore impossible to find
some crossing terms such as ε3 cos 2φzs or ε4 sinφzs. The second property is that the
lowest power of a polynome is never lower than the harmonic it is multiplying. For
instance, it is not possible to find some terms such as ε2 cos 4φzs or ε3 sin 9φzs. Having
strengthened out these two properties it is possible to demonstrate that the functions
∆W
W0

and ∆φ elevated to any integer power will keep such properties. For sake of sim-
plicity, a polynome of the even/odd powers of ε will be called an even/odd polynome
and will be noted Peven/Podd. Also, the cosine or sine function of an even/odd har-
monic of the entrance phase φzs will be refered to as an even/odd harmonic and noted
for both functions Heven/Hodd. Any functions supposed to be a linear combination

Table B.1: Properties of the inner product of polynomes P of ε,
and of harmonics H of φzs.

× Peven Podd
Peven Peven Podd
Podd Podd Peven

× Heven Hodd

Heven Heven Hodd

Hodd Hodd Heven

of even polynomes multiplying even harmonics and odd polynomes multiplying odd
harmonics is of the form

∑

PevenHeven + PoddHodd. Considering the product of two
such functions gives, using the multiplcation rules of Table B.1, a third function of
the same form. The first property is then preserved after multiplication. The second
property is also conserved. For example, multiplying εm cosi φ and εn cosj φ, with the
initial assumptions m ≥ i and n ≥ j, gives εm+n cosi+j φ. The cosine function can
be linearized cosK φ =

∑

k≤K
ck cos kφ (where ck are constant coefficients). This means

that the highest harmonic of the linearized cosine function is i + j. Eventually, the
second property is preserved through multiplication because m+n ≥ i+ j. In conse-
quence, if the energy gain function and the phase of flight are functions of the form
as given in Eq. (B.66), any of their power is too. An other important point is that
if a function satisfies the two properties, its integration over the longitudinal variable
will preserve them since neither the parameter ε nor the entrance phase φzs depends
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on the longitudinal variable. Now, if after the ith iteration, the function ∆Wi

W0
has the

form exposed in Eq. (B.66), then the function ∆φi will be of a similar form because,
according to Eq. (B.65), the ith iteration for the phase of flight is obtained by inte-
gration of all the powers of ∆Wi

W0
, and both, elevation to any power and integration

over the longitudinal variable, preserve this form as mentionned before. To finish the
demonstration it must be shown that reinjecting ∆φi leads also to a function ∆Wi+1

W0

of equivalent form. From Eq. (B.65), the necessary clarification concerns the multi-
plication, for any integer n, of the nth power of ∆φi by ε dnθ cos θ|φL(s), which depends
on both ε and φzs (it is here useful to remember that the linear phase of flight is
given by φL(z) = φzs + kzs{z − zs}). But ε dnθ cos θ|φL(s) is of the form PoddHodd for
any integer n. Multiplying it by ∆φn will therefore give, according to Table B.1, a
function ∆Wi+1

W0
of the expected form. It finally concludes that the solution form of

the Eq. (B.66) is invariant under the iterative process and is in consequence a valid
solution of the initial set of coupled integral equations.
Whereas explicit formulations for the energy gain function and for the phase of flight
function were developed in Annex B.2, their applicability is limited to cases where
the non linear part of the phase of flight is approximately below fourty degrees. In
contrary, The general form for the solutions of the energy gain and of the phase of
flight written in Eq. (B.66) can be used to develop a semi-analytic method of cal-
culations which can be applied to cases with larger non linearity but which has non
explicit dependences (with respect to the particle’s entrance beta and field profile).
The semi-analytic method and its illustration is presented in Section 3.2.3.
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